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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3717

THREE~-DIMENSIONAL TRANSONIC FLOW THEORY

APPLIED TO SLENDER WINGS AND BODIES

By Max. A. Heaslet and John R. Spreiter
SUMMARY

The present paper reexamines the derivetion of the integral equations
for transonic flow around slender wings and bodies of revolution, giving
special attention to conditions resulting from the presence of shock waves
and to the reduction of the relations to the special forms necessary for
the discussion of sonic flow, that is, flow at free-stream Mach number 1.
In the vicinity of the body, the disturbance field is then shown to con-
sist of a two-dimensional disturbance field extending laterally and a
longitudinal field that depends on the streamwise growth of cross-~section
srea. This result extends Oswatitsch's equivalence rule to lifting cases,
provided the angle of attack is small relative to the thickness ratio.

The correctness of the analysis is checked by examination of Yoshihara's
numerical solubtion for sonic flow around a slender, circular cone-cylinder
and this solution is checked, in turn, by comparison with experimental
results of Solomon. An example is presented in which the general result
is applied to calculate pressure and integrated forces on a family of
slender, elliptic cone-cylinders. An expression is derived which permits
the ready calculation of the difference in drag of two slender bodies
having the same longitudinal distribution of cross-section ares. Classes
of wings and bodies are described for which the difference in drag is
zero and the Whitcomb sres rule applies. Experimental data for such a
family of wings of rectangular plan form are exemined and it is shown
that theory and experiment are in good accord.

INTRODUCTION

The equations governing transonic flows are known and well estab-
lished by favorable comparisons with experiment (see ref. 1 for a resumé) .
The difficulties arising as a result of the nonlineerity and mixed char-
acter of the differemtial equation for the potential, however, have pre-
vented the rapid advancement of the analysis such as has occurred in
recent years with both subsonic and supersonic theory. This is particu-
larly true for three-dimensional transonic flows and, as a result, perhaps
greater than usual effort has gone into the determination and utilization
of relations between solutions. The first of these to be advanced was
the transonic similarity rule which pertains to the pressures and forces
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on affinely related wings (refs. 2, 3, and 4) and bodies of revolution
(ref. 5). A second relation is the area rule established empirically by
Whitcomb (ref. 6) which states that "near the speed of sound, the zero-
lift drag rise of thin low-aspect-ratio wing-body combinations is pri-
merily dependent on the axial distribution of cross-sectional area normsl
to the air stream." A third relation is the equivalence rule of Oswatitsch
(refs. T end 8) which may be stated as follows: "The solution for tran-
sonic flow around a thin, nonlifting, low-aspect-ratio wing can be obtained
from that for a nonlifting body of revolution having the same longitudinal
distribution of cross-sectional area by superposing the difference between
the two-dimensional harmonic crossflow solutions for the two bodies."

The area rule and the equivalence rule are, obviously, closely related.
Further effort needs to be expended, however, in establishing the gener-
ality and range of validity of these relations and in exploiting the
results in specific applications. The present paper is concerned with

this task.

The problem will be approached through application of the classical
method of singularities. This is one of the oldest and most fruitful
methods for solving partlial differential equations and has reached a high
state of development in linearized compressible-flow theory. There is
also a considerable body of literature in which the method is applied to
nonlinear compressible-flow problems by considering the solution of the
linearized equations to be a first approximation, and iterating to obtain
second and higher order approximations. The results so calculated are
good approximations to pure subsomnic flows or to pure supersonic flows,
but it is now generally agreed that the series representation of the solu-
tion does not converge in the transonic range. Approximate calculations
by Oswatitsch (refs. 9 and 10) have indicated the possibility, however,
that the method of singularities might be applied successfully in the
transonic range if the idea is relinquished that the linear solution is
necessarily the first approximation in the transonic range. This idea
has been pursued further in references 11 through 15 in which a number of
improvements are introduced and the results of numerous specific calcula-
tions are shown. Although the basic equations are derived for three-
dimensional flow in the latter references, all spplications are to two-
dimensional flows. The values of the free-stream Mach number, moreover,
are restricted to values no greater than unity.

The same general spproach has been applied to three-dimensional tran-
sonic flow around slender wings asnd bodies by Oswatitsch and Keune (ref. 8)
and by Harder and Klunker (ref. 16). In these applications, the principal
aim is not to determine actual solutions but to derive reletions between
solutions for various bodies having the same longitudinal distribution of
cross-section area. These two analyses are not entirely satisfactory in
a number of perticulars, not the least of which is the omission of all
considerations of shock waves in the body of the analysis. A more impor-
tant, although perhaps more subtle, point concerns the treatment of the
cumilative effect of the nonlinear term of the transonic equetion when
the free-stream Mach number M, is unity. Harder and Klunker argue that
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the effect on the induced flow field is small because the term itself is
everywhere small. Actually, however, the cumulative effect of this term
leads to infinite contributions at Mg = 1. Oswatitsch and Keune consider
the cumulative effect bubt circumvent the difficult by introducing rather
arbitrarily selected values for Mach number so chosen that the value of
unity is never inserted into the vitel integrals. It is the initial con-
cern of the present analysis, therefore, to re-examine the derivation of
the integral. equations for transonic flow around slender wings and bodies
of revolution, giving special attention to conditions resulting from the
presence of shock waves and to the reduction of the relations to the
special forms necessary for sonic flow. In contrast to references 8
through 15, which are concerned exclusively with cases in which the free-
stream Mach number is no greater than unity, equations are also derived
herein for the case where the free stream is supersonic. These equations
are likewise reduced to the special form associated with sonic flow and
the results are shown to be identical to those which arise from a consid-
eration of flows with a subsonic free-stream velocity.

Pollowing the esteblishment of the basic integral relations for
transonic flow, special attention is directed toward the case where the
free-stream Mach number is unity. Here, the integral relations are
simpler in character, although still nonlinear. Application of a con-
vergent iteration process leads to the conclusion that the solution for
the potential has a particularly simple form in the vicinity of the body;
in common with lineasrized slender-body theory, the disturbance field
consists, to a given order of error, of a two-dimensionsal disturbance
field extending laterally and a longitudinal field that depends on the
streamwise growth of cross-sectional area. This result extends
Oswatitsch's equivalence rule to lifting cases, provided the angle of
attack is smell relative to the thickness ratio. The correctness of
the analysis is checked by examination of Yoshihara's numerical solution
for sonic flow around a slender, circular, cone-cylinder given in refer-
ence 17, and this solution is checked, in turn, by comparison with experi-
mental results of Solomon given in reference 18. The results yield a
simple means of determining the pressure distribution on an entire family
of slender wings and bodies having the same longitudinsl distribution of
cross-sectional aree when the pressure distribution is known for any
member of the femily. Starting with the known solution for the circular
cone-cylinder, an example is presented in which the general result is
applied to a family of slender elliptic cone-cylinders. This example,
which was discussed briefly in reference 1, is examined in detail. It
is shown that the 1ift and the load distribution are the same as given
by linear theory, confirming the ideas advanced in reference 19. Con-
trary to Whitcomb'’s area rule, however, the drag depends significantly
on the cross-section shape. Both the drag and 1ift of the thin elliptic
cone~cylinder are shown to be in accord with the transonic similarity
rules. A momentum enalysis of the sonic drag of slender bodies in gen-
eral is then underteken and an expression is derived which permits the
ready celculation of the difference in drag of two slender bodies having
the same longitudinal distribution of cross-section area. This result
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confirms the drag variation calculated for the elliptic cone-cylinders
by integration of the surface pressures. Several large and significant
classes of wings and bodies are described for which the difference in
drag is zero and the Whitcomb area rule applies without modification.

One of these is a family of effinely related wings. Experimentel data
from reference 20 for such a family of wings of rectangular plan form are
examined and it is shown that theory and experiment are in good accord,
provided the product of aspect ratio and cube root of the thickness ratio
is, in ‘this instance, less than about unity.

The final section of the report has been written so as to be as
self-contained as possible and readers concerned solely with applicetions
of the theory mey find this section sufficient for their purposes. The
initial sections of the report have been written for readers concerned
with a more complete understanding of the derivation and limitations of
the general theory together with the evaluation of the order of error
inecurred in the slender body sapproximstion.

FUNDAMENTAIL, EQUATTIONS AND BOUNDARY CONDITIONS

The basic equations necessary for the discussion of inviscid tran-
sonic flow consist of a set of partial differential equations relating
the velocity components end their gradients at every point, together with
an auxiliary relation for the velocity jump through a shock wave. For
thin wings and slender bodies ineclined at zero or small angles of attack,
the differential equations cen be simplified if the shock waves are
assumed sufficiently weak that the flow is irrotational and isentropic,
thereby permitting the introduction of a velocity potential &. The
further assumption of small disturbances leeds to the use of a perturba-
tion velocity potential @ which in Cartesian coordinstes satisfies the
following nonlinear partial differential equation

7+ 1l
(l - Moa)q»)]cx + (Py-y- + q)zz = M02 —.6.0_' q)x(pxx (l)

where Ug and My refer to the velocity and Mach number of the undisturbed
flow, 7 is the ratio of specific heats (y = 1.k for air), and x, y, and z
are Cartesian coordinates. The perturbation velocity vector is given by
the gradient of @ and has components u, v, and w along the three axes.

Knowledge of methods for obtaining solutions of equation (1) is
meager not only because it is nonlinear, but because it changes type
(elliptic, parabolic, hyperbolic). This change of type is an essential
feature of transonic flow, since subsonic flows are represented by ellip-
tic equations and supersonic flows by hyperbolic equations. If both
types of flow occur in a single flow field, it is epparent that the
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differential equation must change type. In the present case, the type of
the equation is recognized by the sign of the total coefficient of Q,,,
as follows

> 0 elliptic (subsonic)
(1 - M®)- M2(7 + 1) 7= { = O parabolic (sonic) (2)
< 0 hyperbolic (supersonic)

In most of the investigations of two-dimensional transonic flows
(9., = 0), the differential equation is transformed into a linear equa-
tith of mixed type (Tricomi equation) by the introduction of the hodo-
greph varisbles. At the present time, however, no transformation is
known that achieves a corresponding linearization of the three-dimensional
equation, and the investigation of other methods of solution thus becomes
relatively more important.

Equation (1) is, of course, valid only in regions where the necessary
derivatives exist and are continuous. Since these conditions do not hold
where shock waves occur, and since shock waves are a prominent feature of
most transonic flows, an additional equation is needed for the transition
through the shock. The fundsmental properties of a shock surface require
that the normal component of velocity be discontinuous and the tangential
component, and therefore @, be continuous.- The necessary relation fol-
lows from the classical expression for the shock polar, which in the small
disturbance transonic theory is approximated by

(L - M%) 9, - "’%)2 ¥ (“’Va ) %)2 ' <q’za ) q’zb>2

P

+ Q 2
L, 2¥tl *a % ( )
=M o 5 P, - Pxy (3

where the subscripts a and b refer to conditions ahead of and behind
the shock.

Equations (1) and (3) are usually developed
for the case where the coordinate system is z
Placed so that the x axis is parallel to the \i\\
undisturbed stream at infinity, but they also ™ \ y
epply to the case where the coordinate system Uo S

is rotated slightly. In the present analysis,

it is convenient to aline the x axis with the v
longitudinal axis of the wing or body as shown T /
in sketch (a). Such a system is usually

referred to as the body axes. With these coor- X

dinates, the relation between the total velocity Sketch (a)
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potential ®(x,y,z) and the perturbation velocity potential o(x,y,z) is
approximated by

o(x,y,z) = Uo(x + az) + 9(x,y,2) (]"')

where o 1is the angle of attack.

The expression for the pressure coefficient Cp is not invarient
with respect to small rotations of the coordinate system. In body axes,
the proper expression is

=g Bt o) - 5 (@7 4 0r0) (5)

The boundary conditions require that the gradient of the total
velocity potential evaluated infinitely far from the aircraft be con-
sistent with the uniform free-stream conditions there and, when evaluated
normal to and on the surface of the airplane itself, be zero. The condi-
tion et infinity yields &(w) = Uy(x + az) or that

() =0 (6)

An exception to this statement occurs in the vicinity of the wake at
great distances behind the wing, but no complication ensues due to the
relative smallhess of this region. The condition at the airplane surface
results in the relation

39 - 3
%EUo(n1+an3)+nl-a—z-+naa—$-+n3§3=o (7)

where n,, n,, and ng are the direction cosines of a normsl to the air-
plane surface with respect to the x, y, end z axes, respectively. This
relation is too general for the present needs, however, because it applies
t0 all shapes, whereas the analysis is to be a small disturbance -theory
that applies only to slender bodies and thin wings. For such configura-
tions, n, dis small nearly everywhere on the surface and will be neglected
in comperison with either unity or (ng2 + ng2)*’2. In this wey, equa-
tion (7) simplifies to

Uo(nl+an3) +n2-g-y?-+n3'gc—:'=Uo(nl+m3) +%’%=0 (8)

where n is the normel to the curve bounding a cross section in & plane
normel to the x axis.
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A1l of the subsequent analysis proceeds from Green's theorem which
relates a volume integral over a region V to a surface integral over
the surface X enclosing V. Green's theorem can be expressed in many
ways; here it is found convenient to use the forms associated with the
linear differential equation obtained by equating the left-hand member
of equation (1) to zero. This results in two different forms of Green's
theorem, one for My, < 1, and the other for M, > 1 and prompts the
introduction of the following abbreviations -

/2 7+L

B=(l1-m*)"", k= Mp® —— (9)
o]

If the undisturbed flow at infinity is subsonic (i.e., My < 1),
equation (1) cen be rewritten as -

. .
B0y + Pyy + Ppy = KPPy = k = (%?-) (10)

and the corresponding expression of Green's theorem is (see, e.g., ref. 21)

[[] te@) - e iav - 33[]‘@ 2o as (11)
v

vhere § and V¥ are arbitrary functions and L(Q) is defined as follows

L(Q) = By + Oy + G5y (12)

and 00Q/dv is a derivative along the conormal and is defined by

on _ o0 on o
§;=§£B2nl+gy—n2+gzn3 (13)

where n,, n,, ng &are the direction cosines of the normal to the surface
drawvn into the region V.

If the undisturbed flow at infinity is supersonic (i.e., Mg > 1),
equation (1) can be written as ' -

By + Pyy F Ppy = KPPy = K 5?; ("4’2‘5) (1)
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and the corresponding expression of Green's theorem is

ﬂf [VL(2) - aL(¥) eV = ﬂ (ﬂr )dz (15)

where the following definitions

T(O) = - B0y + Oy + 85 (16)
and
3 _ o0 = o0 of
S_\'.; a B l+ayn2+az (17)
apply.

DERTIVATION OF INTEGRAIL EQUATIONS FOR TRANSONIC FLOW

In this section, integral equetions corresponding to the transonic
differential equation are derived for subsonic and supersonic free-stream
conditions. One of the principal contributions here evolves from the
attention given to the shock waves, or discontinuity surfaces, appearing
in the flow fields. It will appear (see egs. (23) and (30)) that the
perturbation velocity potential can be expressed, for M, less than or
greater than 1, as the sum of integrals that show no explicit contribution
of the shocks. Closer analysis of these integrals reveals, however, that
discontinuities in velocity can appear and that they automatically satisfy
the shock-polar relations (see egs. (34) end (37)). This section is pref-
atory to the formulation of the transonic integral equations for the par-
ticular cases of & slender body of revolution and a thin wing.

Integral Equation, M, < 1

The function V¥ in Green's theorem, equation (11), is now identified
with the fundsmental solution l/o' of the differential equation L(\lr) =
and the function £ is replaced by @, the perturbation velocity potential
of the flow field under consideration. From equations (10) and (11), the
following relations hold

If( -0 g 3 rma - - caxl(gx'L>dV

v
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where
= [(x - %)% + B3(¥ - 3.)% + B%(z - 2,)21+2 (19)

In these equations the running coordinates in the integrations are x,,
Y., and z, and @ 1is to be calculated at a point P with coordinates

X, ¥y, and z.

Equation (18) is now applied to the infinite region V surrounding
the given object to be studied. Some care must be exercised, however,
in fixing the enclosing surface X since Green's theorem requires that
singularities and regions of discontinuity must be excluded from the
domein of integration. It is to-be noted, first, that ¢ vanishes at
X =X3, Y =Y, and z = z; and the effect of the resultant singularity
can be determined only after the field point is enclosed by a neighboring
surface and the region V taken external to this surface. Second, since
shock waves are to be expected within the flow field and discontinuities
in the perturbation velocity components occur across these waves, the
boundary of V mmst also be drawn so as to exclude such discontinuity
surfaces.

Mo« T T -

In sketch (b), a schematic h
indication of the body and the
region of "integration is shown.
The complete three-dimensional
extent of the body has not been ’
Pictured; it suffices, however, to
state that the surface 3= (shown
dashed) is composed of a sphere of
large radius which forms the
external boundary of YV, a sphere
of infinitesimal radius surround- \
ing the field point P, and a final \
surface enveloping the object, its
wake, and its shock waves.

[ .
- -
- QLT

If equation (18) is applied to
this region and the a priori assump-
tion is made that the perturbation
field attenuvates sufficiently fast . Sketch (b)
with distance to negate the contribution of the surface integral over the
large sphere in the limit as the radius goes to infinity, the following
expression results:

- - o1 f( l)gx -
?(x,y,2) ™ ff(“ v Bv o a - { S v Bv o, a
_; k 1 d P,
hnff( P ) Hmo w2 W (20)
v
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In this equation, the integration region over the surface of the object
and its wake is denoted by O + W. The derivatives in the surface inte-
grals are, in all cases, along lines directed away from the integration
surface and into the three-dimensional domsin V since, as follows from
equation (13), the direction numbers have the same sign as the direction
numbers of the true normal and the Mach number effect is limited to a
foreshortening of the longitudinsl dimension. On the shock surface A
the conormals are directly opposed on the upstream and downstream faces
N and Ap. On the body itself, the conormal derivative can be simplified
in the menner used in developing the boundary conditions of equetions (8);
that is, from the restrictions imposed on the gradients along the body
surface, the direction of the conormal becomes effectively that of the
normel n Jlying in the crossplenes x; = const. Thus

S ~n, O S _9
ov T2 +nsaz on

on. the surface of the body and weke.

If the triple (spatial) integral of equation (20) is integrated by
parts x-wise, the resultant form is

""y’z’“rff[ (- 5on=) -0 21 -
FIHCE DO
ﬁ:{f [BGE-Foarn)-e S -
] toa (X H)w (1)

\)

l—dz:_
v o

CVIQ/

Equation (21) is of particular interest because the integrals over the
shock surfaces may be shown to venish. In order to prove this, one notes
first that the two integrals extend over the same geometric surface but
that the integrands are evalusted, respectively, on the upstream and down-
stream Paces and, by definition, the directions of the conormaels are
opposed. When the integrands are combined, the total integrand can be
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expressed as the difference of the two terms, one of which contains the
factor (q>)7\ - (q>)7\a and the other contains the factor
b

(¢xlﬁan1 + @y Np + @, ng - K ‘Px12n1>7\a +

(cpxlﬂanl + QD2 + @z ng - % cpxlsz_)?\b

The first of these factors vanishes by virtue of the fact noted previously
that the perturbation potential is continuous across a shock surface. The
second factor can be rewritten in the form

6%y, - n, sy, + (g = 2 JRzhng + (3, - By -

IE‘ (u7‘b2 - u?\a2> CHN

Also, the change in the velocity vector occurring at the shock surface
mst be in a direction normel to the shock. This implies the relations

(nl)mb : (n2)7\b' :. (n8)7‘b = (u7\b - u7\a> : (v7‘b - v7\a> : (wmb - w7\a>

Thus, the second factor to be evaluated becomes

a <u7‘b - “’\a)a * <v7‘b ' 7‘a>2 N <W7‘b i 7‘a>2 “2 (" 17,\22> (u“b i} u“a)
[(n-mg) + () + (- ) |

The numerator of this fraction, however, corresponds to the shock-polar
conditions of equation (3) and the expression vanishes.

It finelly remains to remark that in the surface integral over the '
body itself, the term n;Px,® resulting from the integration by parts
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is of higher order than the normal derivative of the perturbation poten-~
tial. The term can therefore be neglected and equetion (21) becomes

o(x,3,2) = - = ff(c = l)‘lz* lurJI/‘ P (a >

O+W (22)

Equation (22) provides another integral expression for the perturbation
velocity potential, for My < 1, in tramsonic flow theory. The first
integral on the right is alg?braical]y equivalent to the expression for
o(x,¥,2) in linearized theory and the spatial integral is a contribution
brought sbout by the nonlinear term of the basic differential equation.
It is of interest to remark that a derivation ignoring the existence of
the shock waves can also lead to the same form of the equation. In this
respect the relation is not unlike cases arising in linearized supersonic
theory where it becomes necessary to study the contribution provided by
the foremost shock wave induced by the body. For the majority of cases
of practical interest, it can be shown that compensating terms arise and
that the discontinuity surfaces are teken care of by a formal develop-
ment that ignores the existence of these surfaces (see , €.8., refs. 22
and 23). It is not possible, however, to ignore so completely the exist-
ence of the discontinuity surface in tremnsonic flow and, as will be seen
in the later developments, equation (20) is, for certain purposes, pref-
erable to equation (22).

Equations (20) and (22) will now be written, for purposes of refer-
ence, in the following final forms

o(x,y,2) = (pL(x:Y;z) + —w (le a l av (23a)

- o Goyi) - £ 2 w 9x 2 L (23b)

= (pL(x,y,z) - If—;ﬂA(%g) 5']: az - -l]:—ﬂw‘(-a—g-; %;12 ';' av  (23e)
A v

= %(x,y,z)-t%ﬂA @-9)006.2-— axng 2>de (234)
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In each of the above equations, @, has the analytic representation it
has in linear theory. The first two relations are obvious repetitions
of equation (22). The two latter relations are transcriptions of equa-
tion (20) where the notation A(Jp/dv) = (B(p/3v)7\a + (BqJ/Bv)Ab has been

introduced, the continuity of @ at the shock surface has been used, and
where in equation (23d) the variable

X = Xq
B[(y_yl)z + (Z‘ Zl)zlllz

® = sinh~%

(coxy) | [x-mal + {20 + RIG-50)° + (o207}

EXEN BL(y-¥,)2 + (z- 2,)21*/2

is employed to express the integral equation in & form that will be of
value in establishing a reduction to the case of sonic flow.

The longitudinal perturbation velocity is given by the x-wise
derivative of any of equations (23). Consider, for example, eqgua-
tion (23a). After first isolating the singularity at the field point
by introducing the limits x, = x + ¢, one has

u(x )Y »2)
X-€

=2 k 3 1o 2(0 1
Lot + am £ 2T dyldzl[f 2 ¥ (a:;o‘ Tyt

-0

1 9 1
f '2'q)x12<§:?;0—dx1:|

x+e

e€dy,dz;

[e2+p2(y-y,)%+82(z-2

k 1 2 )
= + lim == = X;¥4,2 -
uL(x;y:Z) . o eﬂﬂa Px, ( 3Y1224) 1)2]3/2

X 1, 2(° _];)
1l-:t-.[[[ 3 ¥ (Bxlz 3/
v

In the limit as e>0 the influence function in the integrand of the
double integral is effectively a two-dimensional pulse function at the

‘
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point y, =y, z; = 2 and of strehgth 21{/[32. The expression for u
then becames

k v3(x,y,z) k 17]‘ u2< d? l>
,Z) = 5Ys ISl Sial L Al Bl u_r e _ =g ol
u(x,y,z) = v (x,7,2) + pe > ” 5 =k v (2k)

A detailed account of the gpplication of the two-dimensional form of this
equation to the calculation of airfoil pressure distributions has been
given by Spreiter and Alksne (ref. 15).

Integral Equation, Mg =1

Use is now made of Green's theorem as expressed in equation (15) and
Q@ 1is set equal to the perturbation velocity potential @(x,y,z). The
direct analogue of the derivation in the previous section would require

i/2
that ¥ be replaced by [(x - x3)% - B3(y - ¥1)2 - B®3(z - 21)%] but
this leads to the immediste introduction of a finite-part technique in
the integration. For the initial stages of the analysis, ¥ will be
identified with the fundamental solution @ of TL(¥) = O used by
Volterra (ref. 24t). From equations (14) and (15), the following rela-
tions hold:

ﬁ -9 B)am-- lTT(w)dv wkm-a% Cp’;la)av (25)

where

x-xl

W =cosh™1
Bl(y-¥,)2 + (z-2,)%1"/2
The successful application of
equation (25) to the transonic prob-
lem hinges on the proper choice of
the three-dimensionsl region V
and its enclosing surface ¥. Dis-
continuities in the velocity compo-
nents are again to be taken into
consideration at the shock waves.
Furthermore, the fundemental solu-
tion of Volterra becomes infinite
at y,=Y¥, z2;=2%2, that is, every-
where along the line passing through .
the field point P and parallel to
the x axis. Sketch (c) indicates

Sketeh (c)
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the disturbance field of the object as well as V and & (shown with
dashed lines). The bow shock fixes the foremost extent to the disturb-
ance field and ¥ lies adjacent to it and other possible shock surfaces
as well as the surface of the object and its wake. The downstream limits
of the region V are fixed by the forecone with vertex at P and deter-
mined explicitly by the relation

1/2

(x - Xp) = Bl(y - YJ_)Z + (z - 21)2] (26)

The‘ inner boundsry of V is the cylindrical surface of infinitesimal
radius given by the relation

(y - Yl)z + (Z - Zl)2 =

The conormsl derivative is defined by equation (17) ; on the infinitesimal
cylinder its direction is parallel to that of the normal to the surface,
and on the forecone from P the conormal is directed along the surface
itself. Formal anslysis yields the expression

= .13 - 19 9w\ -
?(x,¥,2) o5 qu[]( ¥ 'S Bv )dz on Bxﬂ( - @ ov m)az:
k d 3 P, '
Sax_ kO [[Ig 01 =
= M[[( “’)‘E on mem w, 2 o (&N

v

where integrals over the surface of the body and wake are denoted by T,
over the two sides of the shock surfaces by A and Ap, and over the
enclosed volume by V. In each case, only that portion of the surface
or volume lying within the forecone of P is included in the integrals.
The surface integrals over the forecone itself vanish because @ and
du/dV are zero. It should be noted that the forecone is that of lin-
esrized theory and has no relationship to the region of dependence in
the actusl flow field. )

Integration by parts, in the last integral, leads to the relation

P(x,¥,2) = - —lﬂ[ L.k cpx12n1> - cp%ﬁ]df-
L2 (- DE@ o) -
N M '

k 3 1 3 5\aT
2 alllt e (o) (=)
v




16 NACA TN 3717

Equation (28) is the form, for M,2>1, analogous to equation (21), for
M £ 1, and on the body and weke surfaces involves the approximation

It is not difficult to show, fram the shock-wave relation of equa-
tion (3), that the combined integrals over the surfaces Ng and Ap
vanish. The perturbation velocity potential can, therefore, be given
alternatively as

3 [T(522 o Blazs+ £ Lo 2 ()
oxy:2) = - 25 |/ B a.)dz”asa;jz;eq’xl Y aad

T v (29)
Equations (27) and (29) may now be written in the various forms

k 9 1 ow \ =
qJ(x,y,z) = (PL(X,Y,Z) + ngﬁ q)xlz 'a?{'; av (303-)

v

- ko [[[Lg 2147

= o (x,3,2) - 5= 5- _/Z/ 5%, =4 (30b)
v

- o (x,7,2) - _L_B_ﬂ"A é?)maz-l‘.iﬁ(ﬁ.&ﬁ)aﬁ

b At 2r Ox oV 2 oxJuJ \ox; 2

A v (30¢c)

] _i E’i;-_z.ﬂ“[(_é.&ﬁ).l.-
(PL(X:Y:Z) 2nﬂ‘A (35) 3 daz . on S 2 - av (30(3.)
A 7

where @, has the same analytic form as in linearized supersonic theory
and use has been made of the relations

5
W = cosh~l =~ 2
Bl(y-v.)® + (z-zl)zlll2
f (31)
0B _ -1 _-1
% [x-x)® - R -7)” - Be-m) T T
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Camparison of equations (23) and (30) shows once more a difficulty
that eppears in linearized analysis of subsonic and supersonic flow,
namely, that complete parallelism between the formulas is not achieved
directly. This parallelism can only be established after interchanging
the order of integration and differentiation and, because of the singu-
larities involved, it becomes necessary to introduce the concept of
finite-part integration. Furthermore, it is well known that the resulting
multiple integrals can no longer be written in a unique form (see, e.g.,
ref. 25) but must be expressed differently, depending on the order in
which the integrations are to be performed. No attempt will be made to
develop these ideas further at the present time.

Calculation of Conditions on Shock Surfaces

It is of some interest to study equations (23a), (23b), (302),
and. (30b) as the field point approaches a discontinuity surface and to
discover the mechanism by meens of which these basic equations furnish

the velocity jumps associated with the shock waves in the field. To this
end, consider first the case M, > 1.

Sketch (d) shows the geometry of the 4
problem. The bow wave induced by an
aerodynemic shape is indicated and the 7
point P, at which conditions are to

be calculated, is chosen arbitrarily
close to the rear surface of the wave.
The surface of the wave can be replaced
locally by a planar element and a new
coordinate system &, 1, { introduced
with the origin fixed at the intersec-
tion of the line y,=y, z;=2z and the
bow wave. Point P +then has the coor-
dinates &, 0, O and the planar surface
is given by the linear relation Sketch (d)

ak, + I;nl +ct; =0 (32)

Since the bow wave is situated upstream of the linearized disturb-

ance field, wy, is zero and, from equation (30a), the perturbation
velocity is

2 _
u(§,0,0) = % %Ew% @gﬂ b an,dg, (33)
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where ® = cosh™[(& - £,)/B(n,2 + £,2)*/?]. By virtue of the field

point's nearness to the bow wave, the term u2/2 in the integrand is
assumed a constant and one then gets

z Y X
_kuw @ [F f * f dw
Zy Yy X, 1

where

X = - (bny +cb)fa,  Xo =& - B(n2 + £2)*/2

bat +cl,) a.B[a.2§2+ 2actl, - (a2p2- b2 - c2)§12]1/2
Y, Y, = et 3
a2p2 - b2
202 _ p2)1/2
7y,2, = atlc + (a2p p2)1/2]

a232 - 'b2 - c2
Integration and differentiation yields

2
u(£,0,0) = k; G (34)
-a2g2 + b2 + c®

Tt remains to show that this result, derived from the integral
expression for the perturbstion velocity potential, is consistent with
the result one would get from the shock-poler relation of equation (3).
At the downstream face of the bow wave, equation (3) becomes

-Bau:ba + v-b2 + W:ba = kub3/2

The incremental velocity vector occurring et the shock surface is,
however, normal to the shock surface and this yields the relations
Uy iV, iV, = atbic. Substitution into the shock polar relation gives

- - k“’bz(ﬂ up® )_ kuy® a2
T B - e - w/ 2 -a2p2 + b2 + 2 (35)

¢
o9
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in agreement with equation (34). It therefore follows that the integral
expression, for M, > 1, will adapt itself on the shock surface to any
bow wave consistent with given body geametry. This result can also be
extended to include any shock wave in the flow field.

An anslogous procedure follows for the case My < 1. Let the shock
surface in the vicinity of the point P at §,0,0 be given by equa-
tion (32) and essume that u2 is composed of a continuous part and a
discontinuous part that has the constant value ug® ahead of and w2
behind the shock. Equation (23a) then yields

lim [u(&-,0,0) - u(é+,0,0)]
E—>0

X 3 aal dan
= lim —(Uaz-uba)—ﬂ =
28, 8 U (atrin, + ota)®s o020 9L, T

(36)

where the double integration extends over the region of discontinuity.
If the differentistion with respect to € is now carried within the
integral signs and £ allowed to approach zero, the value of the inte-

gral becomes independent of the original limits of integration. Im this
way one gets :

: 2 2_ 2
Uy - up = lim [u(&-,0,0) - u(&+,0,0)] = P ks > ) b

E—>o0 a®p® + b2 + 2 2 ,
(37)
It can be shown, as previously, that equation (37) agrees with the result
given by equation (3), the shock poler condition, for M, §_. 1.

REDUCTION TO SONIC FLOW THEORY

Tn this section, the previously determined equations will be studied
in the limit as sonic, free-stream speed is reached. The integral rela-

tions then assume forms that correspond to the nonlinear differential
equation wvhen B = O.

Integrated Strengths of Externsal Sources

Tt is proposed here to determine a relation that will prove useful
in the following section in comnection with the reduction of the integral
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equations to the special forms appropriaste for My = 1. This relation
will be recognized subsequently as connecting the integrated strengths
of the exterior corrective sources in the crossplane x = X, = const.
and the rate of change of body cross-section area. As a means to this
end, equation (10) is written in the form

. g;uz(xéy,Z) _ g2 311(;;%2) + V20 (38)

where V2 is- the two-dimensionsl Laplacisn operator in the transverse
Plane. Each term is then integrated over the entire x = x5 plane
external to the body. The double integral involving V2@ can be yar-
tially integrated and converted into a line integral by application of
Green's theorem for a plane

ﬂ‘(ﬁmdyd“-f@—g) age (39)
) C X=Xo

where the line or curvilinear integral extends around the curves C
enclosing the region of integration of the double integral. For cases
in which the plane x = x, does not intersect any shock waves, the
region of integration can be taken at once as the entire x = x, plane
exterior to the body. If the assumption is made, as in linear subsonic
theory, that the normal gradient of @ attenuates with lateral distance
sufficiently fast to suppress the contribution of the curvilinear inte-
gral along the outer boundary, the boundary conditions of equation (8)
permit one to equate the line integrel along C to -UQS'(xo) where
S'(xo) denotes the longitudinal gradient of body cross-section area.
The integrated form of equation (38) thus becomes

J@5)_on-r @) swwsn oo
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In the more general case, however, in which the plane x = X, intersects
e, shock wave as illustrated in sketch (e) , Adiscontinuities occur which

X=Xo plane

Sketch (e)

require that the integration region must be divided into two parts, ome
lying between the body and the shock wave and the other extending beyond
the shock wave to infinity. Application of Green's theorem to each
region and addition of the separate contributions results in additional
line integrals carried around the two sides of the shock surface. These
two line integrals can be combined into a single line integral, in wvhich
case equation (40) can be written as follows

kff(g’—x“?zx# dydz+f[A(%’)] 4o, = BZ]](% dy dz - U8 (o)
o N X=X,

X=Xq ( )_I_l)

where A(dp/on) = 39, /on - 39,/on and where in the single line integral
the integration extends around the curve described by the intersection
of the shock wave and the X = X, plane, and the normal n is taken as
directed away from the body.

In the subsequent work, attention is to be directed toward results
at My = 1. We assume here that in the limit as B—>0 the first term
in the right-hand member of equation (41) will vanish and one then gets

d u? 99 - '
kﬂ a—x‘iz- dydz+f<Aan doy = - UgS' (%) (42)
o A X=Xo

X=

It will become evident in the discussion contained in the following
section that the left side of equation (42) represents the integrated
strengths of the exterior corrective sources in the cross-plane

X = Xg = const. in the limit as M, approaches 1. It follows that under
conditions corresponding to sonic flight speed, the totel source strength
in any transverse plene is zero: +the sum of the sources within the body
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or wing (sources appearing in the term CPL) is of equal magnitude put
opposite sign to the corrective sources required by the nonlinear term
in the differential equation.

Equation (42) allows one to mske some conclusions about the lateral
attenuation of the x-wise gradient of u®. Consider the double inte-
gral as written in terms of polar coordinates

a 2
x [[ &L riamo,

Since the definite integral must converge, it follows that the integrand
attenuates faster than l/rl2 and if the assumption is made that the
integrand has & purely algebraic cheracter, one concludes that for large
Ty

2.1 (43)

vhere N is some positive constant.

A check on equation (43) is provided by the work of Guderley and
Yoshihsra (ref. 26) on axially symmetric flow at sonic speed. In that

analysis, for large r,,

ox 2 - I.llel'r

and this is in agreement with equation (%3) when N = 2/7. The same
reference also gives

o9 1
Brl 1‘19 7

which serves to substantiate the assumption made earlier that the curvi-
linear integral along the outer boundary can be neglected in equation (k0).-

Integral Equation for Slender Bodies, M, = 1

In the reduction of the integral equations to the case g = 0,
methods analogous to those employed in references 25 and 27 will be used.
Attention will be confined here to field points at a finite distance
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from the body so that in the limit as B approaches zero, the term Br
can be assumed to approach zero uniformly. As in conventional slender-
body theory for linearized flow, the longitudinal distribution of cross-
section area S(x) is assumed to possess a continuous x-wise derivative.
The method of reduction can be exhibited in a sufficiently general form
if a lifting body of revolution is considered. When M, < 1, the pertur-
bation potential for a body of revolution ¢ follows from equations (23)
and for the purposes at hand the form (23d) is preferable. For suffi-
ciently slender and smooth bodies the term @ cen be expressed in terms
of a rectilinear source and doublet distribution and the corrective source
distribution appearing in the triple integral then extends over all space
external to the x axis. If «k(x) is the x-wise distribution of doublet
strength, e€quation (23d) becomes

CPB(X,I',G)

- E : ' (x,)ax, sin 6 & _ ® (x'xl)ﬂ(xl)d-x

[(x-xl)2+ﬁ2r2]1/2 bar OxXJ) oy x,)2+ p%r 2]1/

ﬂ"( (xxy), Jxxal + [Geexy)® + B3 211/2 )
lht ox v, B [x-x4 | Bory

/
f/f G q’xz)(""‘l) o | ) e Porf 12
ll-ﬂ ox Oxy [x-x4 | 1T

e
II (1)

In equation (44), cylindrical coordinates x, r, & are used where
=y2 + 22, 0 = tan~1(z/y) and the notation

prr= [r2 + r,2 - 21'1'1005(9-91)]1/2

has been introduced.
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Under the imposed conditions, the first two terms in the right
member of equation (4Y4) reduce, as shown for example in reference 27, to
approximately

. 1

k(x)sin 86 U 2|x-x
UO S'(x) '[,nr - ( ) - (o) a ]( ) X - xl Z I ]_I
2 2 bx Ox A |x -x,] B

1

It remains to attempt a corresponding modification of the two remsining
integrals. Consider, next, the triple integral. Since the integration
extends over all points in space, one encounters a nonuniformity of con-
vergence in the logarithmic influence function wvhen B becomes vanish-
ingly small and r; becames infinitely large. From equation (43),
however, it is known that Ou>/dx attenustes rapidly with increasing r,
and the resultant error in miscalculating the effect of the logarithm
for large r; is thereby reduced. The triple integral is therefore
approximated by

k 9 M[ ) uBz(xl’rl’el):l X-Xq 2|x" xll
- 1 ax dx,de
by ox v axl 2 lx-xll o 8P .

IT

This term can be rewritten as

ﬂ [a 5 (x’rl’el):lln P F187130, -

X -X, 2|x- %, | 17’[ 3 uBz(xl,rJ_,Gl):l
dx r,dr,d0
]-l-:\‘t ax Ix xll B 1 axl o b Aol Raadh &

Consider, f£inally, the integral over the shock surface. For 8
near zero, one gets the expression

X-Xy 2|x-x1|

X-X
| 1 | BpII

‘%ga—ﬂ‘nzA——+ sA as

which becomes

L( (x:Y1’Z:I.) inp d.o')\

X=X ) f Aaﬂ as
bx bxflx x| i fx-xlax an(x’yl’zl) A
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where do‘-)\ represents an element of arc on the curve determined by the
intersection of the shock surface and a plane normel to the x axis.
The normel n, as in equation (42), is directed awey from the body.

The reduced form of equation (44), for the case M, = 1, is given
by the sum of the above three expressions. In the forms given, an
apparent dependence on B remsins in the expression

X-X 2|x-x ' d ug2(x,,r,,68,)
" b axf| x I " al dxl[UoS (x1)+kﬂax1 BZ(X;,71,6, r,dr,d6, +

2
xxl

fA %q;é(x:szl) dﬂ'x]
A

The bracketed term vanishes by virtue of equation (42) , however, and the
dependen /Ce on f disappears. The sonic form of the integral equation
for the’lifting body of revolution is, therefore,

Py (x,1,0) = USn(x) hr o n(x)sine P L f -EB-lnijdﬂ'}\+

2
e A

ﬂ (Bx 2-) in pyradr, a0, (45)

Starting under the assumption that M, > 1 and using equation (304),
one can derive the same result, the only essential difference arising
from the fact that in the limiting process care must be teken to restrict
the disturbance region V +to that portion of space within the Mach fore-
cone from the field point at x,y,2.

Equation (45) expresses the sonic equation in the form

(PB(X,I‘, ) = (Pa (x;r,0) + —fA— in pﬂdﬂ'-)\ +

2nﬂ 3x 2 in ppr,dr,do, (46)

where Q)ZB(x,'r ,0) is the harmonic potential for the body of revolution

in transverse planes. As expressed, this sonic form of the integral
equation for the perturbation potential is identical to the integral
equation corresponding to the transonic differential equation at B = 0;
that is, it gives, for a flow field in which shock waves may possibly
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occur, the integral equation corresponding to the partial differential
equetion .

+ 1
Uy + Py = Za— PP (47a)

and admits discontinuity surfaces for which the difference relation

2 2_7+1(an+q>xb )2
(q’ya B (Pyb) * (q’za - q)zb> " Tu, | 2 <<pxa " Py ) (¥7b)

is satisfied. The direct derivation of equation (46) would follow from
an application of Green's theorem in the transverse variables to equa-
tion (47a) without the introduction of the slender-body assumptions.

The interpretation of equation (42) in terms of net source strengths
is now apparent. Each of the three terms in the right member of equa-
tion (ll-6) provides two-dimensional sources in each transverse plane
X3 = const. and the perturbation flow field is simuleted by the combined
effect of these sources and in lifting cases, a doublet term. (The
doublet term is of no concern in the present discussion since its net
source strength is zero.) The first term, P> contains a source on the

x axis with strength fixed by the gradient of area, S'(x); the second
term represents a curvilinear distribution of sources around the shock
wave with strengths fixed by A(B@/Bn) ;3 the last term represents a planar
distribution of sources with strengths determined by the nonlinear term
(x/2) (3/ox)9,%. Equation (2) thus stetes that at M, = 1 the combined
source strength must vanish in each transverse plane.

Equation (46) corresponds, for the body of revolution at My =1,
to equations (23c) end (30d4) in that it contains an explicit contribution
from the shock wave and is expressed in terms -of the basic singularities
of the differentisl equation. A form analogous to equations (23b)
and (30b) can also be derived as follows. Let r = R(x,0) be the equa-
tion of the shock surface. The relation

X o B
ox Bx[ del[ o in Prr® -"-drl‘_iel

an R(x,0,) ) 2
k d f ¥ f up
B — d.el + —_—ln o} rldrl
2% Ox ; R(x,0,) 2 IT
2x ]
-k 3 up® -
= o f de, f 3 5 in pIIrldrldel
o o
2n 2
k aR(x)e]_) ( ug
o f R(x,6,) = A—2=1n ppg ae,

o r,=R(x,6,)
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then holds. Substitution into equation (46) yields

Rk, 2
] oPg ox 2 B
‘PB(X:I':G) = (PZB(X:I‘:G). + é‘];-fA Sn— - = inppdoy +
R
08
k ug®
g —%'Zn pIIrldrldel
and through use of equation (47b) one gets
Up2
g (x57,0) = @ (x;7,0) + ;k; %ﬁ =~ Inppymydr;a0; (18)

The above results have been worked out in some detail for the body
of revolution. The sonic equations for other shapes follow similarly
through a reduction of the general transonic integral equations or can
be expressed directly through consideration of the sonic differential
equation. The final equations for both cases appear as follows:

2
o(x,y,2) = P (x57,2) + % aa_x-.[/‘ 323— anIIrldrldel (kos)

P, i 2
; i i k [['3 8
q)2(x,y,z)°+ f A—=1n pIIdU)\ + -2—1; -a; ? In pnrldrldel

A (49b)

where q>2(x;y,z) is a two-dimensional harmonic function which, for the
body of revolution and for the planar wing is, respectively,

Us'(x) o - k(x)sin 6

25 = T on O (50)
8o (x) 1/2
Py = EJ:\./‘ Aww(x:'Yl)Zn[ (v - Y:l.)2 +2°] dyy +
-Sl(x)
55(x) z dy,
= AQ (%57,) (500)

Ls, (x) [(r-¥,)% + 2]

e e —m ey et - - ——
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In the latter expression,

ta(xsyy) = wxy),_ . - w(x571)

Z2=0~

(x5y1) = @(x372),_ = 9x5371) poon

and the lateral boundaries of the wing plan form are fixed by -s(x)
and so(x).

SLENDER-WING THEORY 1IN LINEARIZED FLOW

In the preceding development, the integral relation for the pertur-
bation potential in sonic flow has been expressed in a form that follows
from an application to equation (47a) of Green's theorem in transverse
planes. The determination of a solution thus depends to a large extent
on the evaluation of the effect of the two-dimensionel singularities that
are placed throughout the exterior portion of the flow field. Examples
of a direct attack on a similar problem are to be found in the calcula-
tions of two-dimensional transonic flows by Oswatitsch, Gullstrand, end
Spreiter and Alksne, references 9 through 15. In the present report, an
indirect attack is to be made, following the ideas of Whitcomb and
Oswatitsch (refs. 6 and 7) by relating the solution for a slender wing
to that of a body of revolution. The anslysis will show that once one
establishes the details of the crossflow potential fields assoclated with
a wing and its relasted body of revolution, the residual disturbance fields
near the two bodies are the same to-a certain order of accuracy in terms
of the slenderness ratio. The mechanics of such an approach can, in
fact, be observed in linesrized wing theory and such a development will
be given in this section as a prelude to the subsequent sonic theory.
Attention will be limited to the subsonic case and, as an added simplifi-
cation in the anelysis, only wings possessing latersl symmetry will be
considered elthough such & restriction is not essentiel.

Anslysis

The linearized equation for subsonic potentisal flow is

I A (51)
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and if Green's theorem is applied, formal menipulation leads to the
following integral relation for the potential Py of a planar wing

2
cPw(xx}",vz) = (Pzw(xiy':Z) - g‘;ﬂ‘%ﬂfw(x’rl’el)zn[ra + r;2 -

2rricos(6 - 6,)1%2 ridr,a0, ' (52)

No integrals along possible discontinuity surfaces are necessary since
shock waves do not appear in linearized subsonic flow theory. Equa-
tion (52) is linesr in @ and cen be separated into additive expressions
contributing to q:w » the potentiel associated with the thickness dis-
tribution, and o’ the potential associated with camber and angle of
attack. TIn this wé.y one gets for the perturbation velocity components

Yy,t = Ve, T ‘2—1( ‘B-J:\.U‘(PXXW % n[r2+ r;2 - 2rr, cos(6 - 9:,__)]1/2 r,dr,86,
(53=2)
it T Y2y T _;Li %ﬂ¢ﬂw,t in[r2+r,2 - 2rr;cos (6 -0,)1*/2 rydr,d0,
, (53b)
and
W,o = Yoy o - 22; %ﬂ¢ﬂw,a n[r2+r)2 - 2rrycos(0 - 91)11/2 rydr,d8;
(S4e)

—

Vil,a = Vay o % aaz ‘[/‘ Py o, Welr2+ 22 - erracos(6 - 62)1*/2 ryar,a0,
(Skp)

The corrective integrals in equations (53) and (5%) obviously do not
modify the area distribution in the thickness case by virtue of the ver-
tical symmetry in the flow field nor the load distribution in the camber
case by virtue of the vertical asymmetry in the field. It follows that

Dong o = Dozy oy Big o = Miay (55)

where the delts notation denotes the increment in the function in passing
through the plene 2z = 0, that is, the difference between the values on
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the upper and lower surfaces of the wing. As & consequence, q>2W can
be expressed in the form

P. (x:Y:Z) s(x)
2 — =L f A in(x? +y,2 - 2ry,cos 9)1/2 dy, +

Uy 2x /s (x) Uo
L fs(x) A(PW:CL r sin 6 dy, (56)
2n J (x) U r2 + y12 - 2ry,cos 6

If exact conditions on the wing surface are to be sought in linear-
ized theory, equations (53a) end (53b) must also be satisfied. For
example , in the direct case of given thickness, equation (56) predicts

W + and equetion (53b) is then used to determine the exact streamwise

velocity component as affected by the external-source - integral. In the
direct case of given loading, equation (56) predicts oy o and eque-

tion (54b) is then used to calculete the true wing camber, modification
of WZW @ being produced by the integral term. The difficulties of such
b

calculetions are so disproportionate to those of solving the linearized
equation by standard methods that they appear to add needless complica-
tions to a relatively simple problem. In transonic theory, however, the
right-hand member of equation (5L) is replaced by a nonlinear term and,
in the absence of more obvious methods of attack, the difficulties
involved in such an approach became less of a deterrent; in particular,
the integral forms of the corrective terms sre of added interest since
they are suited to approximations. The details of such an approach will
not be considered further at the present time since for slender wings
the use of a related body of revolution yields information of a sufficient
order of exactness 'in both linear and nonlinear +theory.

In the following work, a complete knowledge of the solution for a
body of revolution will be assumed known. Thus, if S(x) is the cross-
sectional area of the body and the distribution of 1lift is fixed by lc(x) s
doublet strength per unit of length, the linesrized solution for the body
of revolution is

op(x,r, 9)= 'i'f 8' (xy)ax; _ B?r sin Gfm r(xy)ax;
Uo bt [(x-x,)%+ 321'2]1/2 bt [(x-x,)%+ per2]%/2
(57)
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and the perturbetion potential in the transverse plane is

Pop(x;7,6) _ s'(x)in r ) k(x)sin 6 (58)

Uy 2x 2nr

The integrel relations for the wing end the body combine to give

Py =P =0, -~ -Ei\.”‘(q’w-%) n[r2+ r,2 - 2rr,cos(0 -6 )]llardrde
W B "2y "2 on xx 1 1 1 105199,
(59)

Bquation (59) is exact, subject only to the restrictions of first-order
perturbation theory, but with added restrictions on the geometry and
loading it is possible to show that the magnitude of the final integral
is negligible to a certain order of accuracy. We now assume the wing is
slender, that is, s(x) is small in comparison with over-all wing length.
Let, furthermore, the wing and body be of equal length and have identical -
longitudinal distributions of cross-sectional area.. This implies

(<) oyl 3, )a,
-8 (x) U.0

8'(x) = (60)

end establishes the condition that the distribution of two-dimensionsl
source strength in equation (58) is equal to the strengths integrated in
the transverse plane of the sources appearing in equation (56) . It will
also be convenient to equate in the same manner the doublet strengths in
those two equations and one is led to the relation

s(x) agp (x5y,)ay,

-8 (x) UO

k(x) = -

(61)

The first objective will be to show that for field points in the
vicinity of the slender wing the first two terms in the right member of
equation (59) differ from the left member by an amount that is of higher
order in s/‘L . The evaluation of the error term can be performed by
an iterative process in which the first step starts with the approximation

(62)

e e — —
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Before integration, the integrand in equation (59) will be written
as the product of Fourier expansions of its terms. For the logarithmic

term, one has

( = m
Iz, - Z(f;) cos mnE6~91) , TS
m=1
n[r2+1r;2 - 2rrycos(6 - 91)] J
lnr- Z (r1> o8 m(e =63) s T
=1
(63)
end, similarly,
[ = o
J-
1@ e e
r sin 6 m=1
= (6t

r2 + y;2 -~ 2ry,cos 8

Z() sin mé , rélyll

Ill-—l

If equations (63) and (64) are used, together with equation (56), and
conditions of bilateral symmetry are imposed, one gets

Poy(x;¥,2)  8'(x) s o 8y (x)cos 2mf z Doy, (x)sin(20-1)0

Ul "~ em = (x/s)*™ o )
ssT (65
where
s(x)
8op(x) = ll-nm f * M <y1> 9y, (662,
-s(x)
and
s(x) x om-2
bop_q (x) = -Q-J;i- f A02(x:33) (y ) (66b)

-s(x) Uo
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Equation (65) holds true beyond the circle of radius s(x) enclosing the
transverse section of the wing; within this circle, the expression is

Poy(X:¥52) _ 5" (x) \" Aon(x) BN
Ul 2xl 'Lns+n=o (2r1+l)2 [(S> l] *

) e S el 6w @) )

=1

® 2m-1

) R R (R

m=1

O G =] s e

where the coefficients Aop end Boy are related to the boundary condi-
tions through the expansions

Do (%,54) _ i nlAo, (x) Z]__'zn

Tl L)' el (2) (688)
n=o

Aq)z(x:yl) _ N MY -

Toa nZontn(x) s—) (68b)

Once the coefficients azp, bom-1;, Aopn, and Bop are related in
magnitude to the geametry of the wing, the size of the integral term in
equation (59) cen be estimated. Since Aw(x,y)/U, is proportional to
t%x)/l , the wing's thickness ratio, it follows from equations (66) and (68)
that the following order estimates hold

aom(x) = 0(%s/13),  Aon(x) = 0(ts/13) (69)
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Let, furthermore, AP(x,¥y)/U, be assumed proportional to ofx)s(x)
where u.(x) is a measure of local angle of atitack or camber; equa-
tions (66) end (68) then yield for the remaining coefficients

bap-1(x) = 0(as/1),  Bop(x) = 0(as/1) (70)

Equation (67) can also be written in the simplified form

oy (%37 52) ' N
2W\X3Y52) g (x) in s+F(X, _1_-)_'_2 cos 2mo Gm(x, _1_-_>+
Upl 2xl 8 om s

m-1
i sin(2m - l)eﬂméc, i’-) », T<s (T1)
m=1

with the order estimates
F(x, §> = 0(ts/12), Gm(x, !;-) = 0(ts/12), Hm@, -g-) = 0(as/1)  (72)
Eveluation of order of error in equation (62).- Equation (59) is now

written in the form
q)w(x,y,z) = (Paw(xiy,z)' - q)zB(x;r’e) + (PB(X,I',O) + I(x,r,0) (73)

where

251

® 2
I(x,r,0) = - éﬁf_[ l -a—axz— (@ -9g)1nlr2 +r,2 ~ 2rrycos(6 - 61) ]1/2rldr1d9;,_

(74)

and an estimation of the order of magnitude of I(x »r,0) is to be mede
for field points in the vicinity of the wing. The approximation of
equation (62) is to be used together with the given expansions of the



two-dimensional perturbation potentials. Tt suffices to simplify the analysis and estimate th
of the error at r equal to 8. One then gets

I(x:B:e) " E&(x,s,G) + Eg(x:s:e)
Uyl Ugl Uyt

= - —ff Z [a.am(x)( l) cos 2m8, + bam.,.,_(x)(J sin(2m+l)6 ] | [m ry -
Z ({9 cos n(9 el)] rydnyd0y - B f f [Sz,ff) 4 (x, r)

n=1
EZL Eg% G;n( ) z sin(2m - l)GlHn(x, ——:l ['ln 8 -n=1 (—A) M]rldrldel

After integretion with respect to 6, one has

ﬂi'f.’i) ~ E_a f T azm(") (L}m cos 2md + —E—mr-&( \m ain.(2m—|-l)6_|r-.dr-. -
Ut 2y L Su+1 \F1/ J -

F

8 00
| -} 2m

P[22 (e, D) mar, + £ [ ) [(2) cosmme g, 5,

o =4 47 -1 A Y ~/d e J La L\~/ umi =\ B8

o] m=1
r = in(2m n
(; 2 =1)6 Hm(x: 22 ] r16r)
(em-1)

LTlE BT vOvR

Ge
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From equations (69), (70), and (72), the order of mesgnitude of I(x,s,0)/Ugl
is given by

I(x,s,9) 2 (tss )
> O =2—
X ” In s (76)

The first step in the iteration fixes the meximm value of the error
incurred in neglecting the integral term of equation (74). In the vicin-
ity of the wing, therefore, the perturbation potential can be expressed as
in equation (62) with an error of the order given in equation (76).

Near the body, a further reduction of the difference @p - q)zB is

possible since the explicit equations for the body of revolution are
available. This yields the usual form of the slender-wing solution.
Thus, from equation (62),

By = Poy + £(x) (77)

where

£(x) = lim Pz - q>23> =- .g.;t-[ [ q)}mB(x,rl,el)'Ln Trir,0r,40,

r—>0
(78)
From equation (57), £(x) becomes, for the subsonic case,
1 ©
1
f(x) = BiUo ga_f (x 'xl)s'(xl)dxlf nryr,dr; —
T x (o] (o] [(X-xl)a + Bzrla]
1 2
U d [ x-x) S'(xl)[ln -(-x—:il-z-w in h]dxl
8t Ox |x - x5 | 2
1
Us 3 (x-x;) 2|x - x4
-_29 8'(x,)in 22220 ax (79=2)
E:‘_t ax A lx— xll ( 1 B 1

Tt is not difficult to show by & similar enalysis teking into account
the possibility of discontinuities in the flow that equetion (77) holds
elso for M, > 1 end that f£(x) then has the form

Uo O * 2(x-x,) dx (79b)
B

£(x) == 5x 5 8'(x1)in 1
o
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SLENDER-WING THEORY IN SONIC FLOW

The extension of the foregoing derivation to the nonlinear case
will be given in this section. The iteration procedure designed to dis-
cuss the linear problem is effectively the development of an expansion
in terms of the slenderness parameter of the wing and with appropriate

restrictions on wing angle of attack can be applied with little
modification.

Anglysis

Equation (1I-9b) » the relation fundamental to the following discussion,
provides that the sonic expression for @ velid in the Xx = x5 plane
cen be considered to be composed of three terms; ¢, & line .integral
around the possible intersections of the x = x, plane and a shock wave,
and a surface integral over the entire portion of the x = x5 plane
exterior to the body. In many importeant cases, simplification occurs
because the line integral introduces no contribution to the values for @
in the vicinity of the body. Perhaps the simplest case in which this
situation develops is that encountered very frequently at My, =1 in
which the shock waves are situated entirely downstream of the most rear-
ward point. A second case in which the line integral introduces no con-
tribution occurs when the discontinuity surface is situated in amn x = x4
plane and is, therefore, essentially a normal shock wave. The disconti-
nuities associated with the normal shock wave are contained in the con-
tribution of the double integral. Since most sonic flows about smooth
wings or bodies probably fall into one of these two cases, attention will
be confined in the following discussion to those cases in which no con-
tribution results from the line integral. Thus, if equation (49b) is
written first for a wing and then again for a body of revolution, and
the latter is subtracted from the former, the following relation is
obtained:

U lx,352) = @, (x5752) - @, (x57,0) + 9g(x,r,0) + J(x,r,0) (80)

where

L] 210 1
. k
J(x,r,0) = '—f f 13 (uwa - u32>7,n r?- r,® - 2rrycos(6 - 6,) §r:,_d:cldel
27 2 ox
o o
(81)
The quadratic nature of the integrend in equation (8L), together

with the additive dependence on thickness and cember in the tramsverse-
plane potentials, prompts one to simplify the analysis to cases involving
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a8 thin wing of given thickness but limited to an angle of attack or
camber-length ratio o that is small in comparison with the thickness-
length ratio t/i. In this way, sufficient information is retsined to
establish the relationship between the wing and body flow £ields for the
thickness case and at the seme time determine a linear dependence on
angle of attack of the wing loading in the vicinity of o = 0. Under
these conditions it will be possible to relate the wing flow field to
that of a body having the same area distribution but not inclined to the
free stream. Consistent with these conditions, the following equations

apply:

Vay = P2y, * Py, %25 %2pt (82)

and the perturbation potentials for the wing and body can be expressed
as

= %,t+W,ar PB=Pp,t (83)

where the subscripts +t and o identify the contributions attributable
to thickness and cember. The term w7 - up® in the integrand of equa-
tion (8l) can now be approximated by

. 2
2 2 .. -
W ' ® (uzw,t - u213,t> + zuB,tGE‘w,t uZB,t> +

(uzw,t - u23,t>“‘2w,a + 2up gUoy o ()

where the initial assumption

W~ Poy - P2p  * B, (85)

hes been made and higher order dependence on a, has been deleted. It
remains to show, through the evaluation of J(x,r,9), that the assumption
made in equation (85) holds. It should be noted that, to the order of
exactness of this equation, normal shocks on the wing and body are sit-
uated at the same longitudinal station.

The first two terms in the right member of equation (84) depend
solely on the thickness distribution of the wing and body, and the two
remaining terms contain the effects attributable to the 1lift and thickness

combined. Substituting from equation (84) into equation (8L), we see



that the first two terms con'bribute to J(x,r,8) a function that is symmetric sbout 2z = 0 end the two

latter terms contribute en ssymmetric quantity. From equaetion (80) one then gets

Awwt—Aw ot A““:ﬂ-':mew@

These relations are identical to those glven in equation (55) and, as a consequence, equation (56)
pecessarily remeins valid along with the expensions given in equations (65) and (67).

We now approximate J(x,r,0) at r = s:

J(x,s,e) Jl(x,s,e) Ja(xxﬁie)
M == +

Ul Ugl Ul
Lk AJ‘T]@“ i afam(x)coa anél + 2up 4 - a.'am(x)coa 2md y . i a.'am(x)coa 2m 4 .
b Ox 5 © m=1 (rl/s)zm ’ mn= (rl/B)Em m=1 (rlls)m
1 < Yopo(x)sin(2v-1)8, . ? cos n(8-6,)
EIJ.B,t — - In Ir - z (%') r d-r de +
'JV 1 (ri/s)av 1 1 L T n 1AL
x 3 [T s(x) ( r) Zcosanelqm( _1,) 8"(x) . s
by Bxf o 'Ln Sy - exl n Ty *
3 =2 ] [t DELTEL
m=1
1 al NS 0-8
EuB’tJ Z sin(av-l)elﬁ{,(x, %’--)} L‘Ln 8 = s) cos 1:1.1(1 l)-'rldrldel (86)
V=1 n=1

LTILE WL VOVH

6¢
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The orthogonslity of the trigoncmetric terms, together with the fact that Up 4 hes no depend-~
ence on O, permits one to achleve cansiderable simplification after the 6, integration. The
resulting expression is

I(x,8,0) N-E--a%f ni—m—-—(x) n ry - 2mp ¢ i’[coszime (rl/Slm-F

8 m=1 (1'1/3) _ m=31

sin(2m- 1)8 By _. (x) ] 5 BT
-1 + [ ] . L] + ;kl—l—f .—Bn— '( &)
)aun-a] T2dr, hy Ox A a,a n ry +F ¥ B +

-~
L&)

2

o
cos 2md r 8" (x) B r
Z_____}.Gn'(x,-i"-‘ ] Inarldrld.61+ﬁ-t§; 2muy 4 [éﬂ-_&— 1n;;_+F' x,—s'J-' In s-

LR D) LB e ) e

The convergence of all the terms in the first integral is assured when up ¢ varies as l/r“ for
large r, § heing any positive constant; for small r we assume U‘B t Varies dlirectly with cross- -
sectionsl eres of the body. The order of megnitude of J(x,s,8)/U 1 'can then be seen to be given by

OLINCI o 2
A

Since 1t follows from equations (85) end (56) that the megnitude of @ fUsl in the vicinity of the
wing is 0[(ts/1 )in s], the relative error incurred by neglecting J/Uo'!. is O(ts"/l')
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Following the method used in deriving equation (77), we can achieve
g final simplification in the wing's perturbation potential. Thus,

Py = <P2W + g(x) (88)

where

nryr,dr, (89)

g(x) = lim (ch & - P2y t) f d uBa(x’rl)

In the absence of ical solutions for the body of revolution problem,
the evaluation of g(x) must be carried out by less direct methods. This
will be discussed further in the section on applications.

APPLICATIONS TO SEVERAL PROBLEMS INVOLVING SONIC FLOW

In the following section, the exploitation of the results for sonic-
flow conditions will be carried out in some detail. In view of the
difficulty associated with transonic analysis, it appears likely that the
equivalence relation of equation (85) will play an importent part in the
interpretation and use of experimental date as well as in purely theoreti-
cal predictions. The discussion will be concerned principally with appli-
cations to slender wings and bodies and to the relationships between the
aerodynamic characteristics of the two configurations. It is obvious
thet the known basic information can be supplied either by theory or by
experiment and meny of the results to be given are written with the ides
that they can be used in this dual sense.

Resumé of Principal Results of Slender-Body Theory

It appears worthwhile, before proceeding to the examples, to
re-exaemine the problem of transonic flow about slender bodies of arbi-
trary cross section from e heuristic, although less rigorous, point of
view. This second approach may be regarded, if one prefers, as a physi-
cal interpretation of the result given in equetion (80).
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Consider the case of compressible flow about the slender body of
arbitrary cross section shown in sketch (£). The general procedure is

SLENDER BODY THEORY

Uo \
\

f(x) linear
G(X) Mo=|
oHo B
Q=
‘Pz'_, ‘pz\“ - q’g“ +

e >

. LINEAR
1-M) O, +@,, + {
xx +Pyy + 9z = KO, Bye Mol

Sketch (f)

10 consider first the complete three-dimensionsl problem, and then to
introduce simplifying assumptions consistent with the restriction of
slender plan forms. As in the more detailed analysis, it is again assumed
that any shock waves are situated either entirely upstream of the most
forward point of the body or entirely downstream of- the most rearward
point, or are normal shock waves if situated along the length of the body.
The resulting solution for the perturbation potential can be expressed

as the sum of four parts. As in the preceding analysis tp2W s Cp2w £’

and q>23 g are solutions of the two-dimensional Laplace equa,tion as
ind:n.ca.ted. Thus @ @ corresponds to the-two-dimensional incompressible-
flow solution for transletion of the cross section, and (PZW % to that

for the growth of the cross section. In addition to sa.tisfy:‘i,_ng the pre-
scribed boundary conditions et the body surface, these two terms satisfy
‘the requirement that the lateral velocity components (39/3dy, 99/dz) venish
at infinity. These terms alone do not furnish a satisfactory approxima-
tion, however, for cases in which S(x) is different from zero because
q>2W acts like S'(x)ln r at large r, and hence Bcp/ax is infinite

’

at & large lateral distance. This error can be removed, however, by
subtracting the term Cp2B N corresponding to the two-dimensional

incompressible~flow solution for the growth of & body of revolution
having the same S(x) as the original body (thereby canceling P2y ¢ at

large r), and adding the three-dimensional solution P54 for £ldw
2
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about the same body of revolution. If q’B,t is determined from linear

theory, the results correspond to the familiar formulas of subsonic and
supersonic slender-body theory. (This leads, in both cases, to the
result given in equation (62) end reduces to equation (77) where, for
subsonic flow, £(x) has the form given in equation (792) and, for super-
sonic flow, the form given in equation (79b) .) TIn keeping with the
previous asnslysis, this function of x will be denoted by £(x) if it
is determined from linear theory and by g(x) if determined from tran-
sonic theory.

Although the linear-theory approximation is unsatisfactory at My=1,
the seme intuitive procedure can be extended to sonic flow. The desired
expression follows if ‘PB,t is determined from the transonic differential
equation. Thus, as given in equation (85), one has to a known order of
accuracy,

= q)ZW,or. + cPZW,t - CPZB,t + P4 (90)

and this result reduces for points near the body to

Py = Popy + &(x) (91)
where
P = @ +Q » g(x)= lim -9 t) ' (92)
2W ZW,CL zw’t ( reo ¢B,t ZB,

as indicated in sketch (£). It is apparent that equation (90) has a duel
basis for velidity and represents either the relation afforded by tran-
sonic theory for My = 1, or that given by linear theory for other Mach
numbers. The customary restriction to slender wings and bodies must be
observed in both applicetions.

The power and weakness of the present intuitive reasoning is well
illustrated by the fact that the relation given by equation (90) is
found without recourse to the detailed investigation of the earliex
sections whereas the restriction to small angles of attack that enters
in the simplification is overlooked. This deficiency stems from the
fact that it is insufficient to assure that merely the infinite veloci-
ties be removed. Since the space involved is infinite, it is also neces-
sary that certain integrals of velocity (see eq. (43)) be finite, and it
is in connection with the attenuation of the velocities arising from the

term q)aw @ that the deficiency occurs. One could, perhaps, have
)
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continued the heuristic reasoning but, once the principal idea has been
established, formal analysis can be used to establish the restrictions
and to evaluste the error terms involved.

Some insight into the validity of the foregoing equations can be
obtained by examining the numericel solution given by Yoshihare in ref-
erence 17 for sonic flow about a circular cone-cylinder at zero angle of
attack. Inasmuch as it was not assumed either explicitly or implicitly
that the perturbation potential in the vicinity of the body has the form
indicated by equation (91) (the boundary conditions were satisfied at
the actual body surface rather than along the body axis), these results
are perticularly suited in this respect for the investigation of the
region for which the simplified relation applies. On the other hand,
the example is not ideal because the sharp corner at the shoulder violates
the smoothness condition; it is, however, the only case for which a
theoreticel solution is available. Accordingly, sketch (g) has been

04 o 4 a

y 4 <2 __9

j REYPR
6 5% ! -

Sketch (g)

Prepared so as to show the variation of q:B’t/Uo with r for seversal

stations along the length of the cone for the case in which the semiapex
angle 6 is l/lO redian. Attention is called to the fact that the
values for PB,t given in this sketch are for a cone of unit length

whereas ‘the original velues given in figure 5 of reference 17 are for a
cone of length 10. A dotted line is also shown for each station repre-
senting the values obtalned after subtracting csz t/U° computed by

J

P2y 3

»t 1l das xlnr

=——1 = 93)
Uy 2m ax ¥ =700 (



NACA TN 3717 k5

from @p -[-,/Uo at the same point. In order to illustrate further the
B
nature of these results, sketch (h) has been prepared to show the varia-

¢B|_oz r:x/'o(wrfuce)
h! 4
T .2
04 ——
/E
. Mozl
r=.2
.02
Ol
8=l N S N
--—)-‘ ——-—_-— fmvn e (J x
I L F
_____ ——
Sketch (h)

tion of PB,t - CPZB, £ with x for various r. The resulting values

should, according to equation (92), be & function of x alone for
small r. It can be seen from an examination of these sketches that the
difference ¢g ,t - q)zB + is indeed very nesrly a function of x in

most of the region for which results are available. Slight deviations
occur in the immediate vicinity of the nose and at the largest distances
from the body. The latter departures are so small, however, that it is
necessary to possess additional information for greater distence from
the body before one can determine the extent of the region for which
the g(x) function is appliceble.

Determination of g'(x) in Terms of Pressure Distribution
on a Nonlifting Body of Revolution

Although q)B +? and hence f£(x), can be calculated directly by means
J

of linear theory for either distinctly subsonic or supersonic flow, gen-

eral methods are not yet avaeilable for the theoretical determination of

Pg,t in transonic theory. It is evident from its definition, however,
J

that S$X) depends only on the longitudinal distribution of cross-section
area S(x), and that its derivative can be determined from simple aero-
dynsmic measurements of the flow about a slender nonlifting body of revo-
lution heving the same S(x) as the given body. From the point of view
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of applications, nothing is lost in not knowing the actual level of
g(x), however, since knowledge of its gradient, g'(x), is sufficient
for the determination of flow quantities such as velocity and pressure.
Since the easiest flow quantity to measure is generally the pressure
distribution on the surface of the body, perhaps the simplest way to
determine g'(x) is through a relation expressing this quantity in terms
of the pressure distribution. The necessary relations for the perturba-
tion velocity potential ch,t and the pressure coefficient CPB % are

provided by equations (48) and (5), which reduce, in the vicinity of a
slender nonlifting body of revolution, to

_J as L
P, = rodrm in r+ g(x) (9k)

2 2
__2 09 dR) _ .2 S _ ST (x)
<CPB’t>r=R -7 U—o 3 qJB,t - (d_x'> U, Ox Pp,t hs (95)

where R(x) represents the radius of the body of revolution end the prime
denotes differentiation with respect to x. These relations can be com-
bined to solve for g'(x) in terms of the surface pressures and the
cross-section area with the following result:

, 1) s"(x) . s . 8'3(x)
g'(x) = - -éc—’ <CPB’t>r=R + 2: In =+ _hfs_ (96)

The cone-cylinder solution of Yoshihara (ref. 17) again affords a
means of illustrating the application of this result at M, = 1. Thus,
sketch (i) has been prepared to illustrate the variations with x of

12 \
Ge
o O Vi
M=l
- \
o) |
0 -r-:"z‘.:\-&‘__‘ — i
04 3y

~



NACA TN 3717 L7

the pressure coefficientl on the surface of a cone-cylinder having a
semiapex angle of l/lO radian, and of g'(x) /Uo computed therefrom,
using equation (96). As in the case of sketches (g) end (h), the values
of g'(x) have been converted from those given originally for a cone of
length 10 to those for a cone of unit length.

It is likewise evident that the function g'(x) can also be deter-
mined from pressure-distribution data for thin wings in an anslogous
menner, although naturally more geometric quantities are involved in the
calculation.

Relation Between Pressure Distributions -
on Related Wings and Bodies

Wings and bodies having same longitudinsl distribution of cross-
section area.- Bquation (90) displeys the relationship between the per-
turbation velocity potential for a thin low-aspect-ratio wing and
the corresponding potential ¢p  for a slender nonlifting body of
revolution having the same long:f.tudinal distribution of cross-section
area. In most practical applications, however, one is not so much
interested in reletions involving the velocityl potential as those involv-
ing the pressure distributions. The following discussion will be con-
cerned with the derivation of such a relstion. Thus, consider the two
objects illustrated in sketch (Jj).

Both have the same S(x), but the

first is a nonlifting body of revo-
lution and the second is a thin Us
lifting wing. The relstions for the “a
potential and pressure coefficient

for the body of revolution are those
given in equations (9%) and (95) of

the preceding section. The corre-
sponding relations for @y and

in the vicinity of the wing are

Sketeh (Jj)
P = P, + g(x) (97)
2%
Coy = U, o (98)

The curve for CPB % shown in sketch (i) differs from that given

J
originally in reference 17 due to the correction of a sign error in the
quadratic term of the expression for pressure coefficient. For the cone
having a semiapex sngle of l/lO radisn, this change has the effect of

diminishing the values given originally for CPB t ©n the cone surface
by & constant amount, namely, 0.02. ?
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Since g(x) is the same for both objects, the desired relation between
the pressure distributions on the wing and body of revolution can be
determined by cambining equations (95) through (98); thus

o9, 2
= 2 2w §"(x), 8, 8" (x)

It is interesting to note that this relstion holds not only for nonlinear
theory of sonic flow, but also for linearized slender-body theory for
subsonic and supersonic flow. This follows directly from the fact that
equation (91) and the associated statement are equally correct in linear-
ized slender-body theory if g(x) is replaced by £(x).

The term involving . can be considered known inasmuch as it can
be determined directly usitzlg equation (50) or any of several other
methods (e.g., conformel mapping, etc.) availsble from classical two-
dimensional potential theory, or indirectly if either the linear theory
or the slender-wing-theory solutions are known for the wing. To illus-
trate, let the subscript S denote the velues indicated by the slender-
wing-theory solution. Then, for example, if (cpw)S is lmown, @y, 1s

given by

Poyy = (@) " £(x) (100)
vhere f(x) is provided by equations (79). Correspondingly, one has
o9,
-2 8 2 101
To 3% (prs + T (x) (1o1)

If, on the other hand, the linear-theory solution is available, the
relation

Llim = 1lim @, (102)
My—>1 L M—>2 S
applies, whence
o9,
-2 3. um (cpw> + 2 ' (x) (103)

where the subsceript I. refers to values given by linear theory.
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Equation (99) ensbles ocne to calculate the pressures in the vicinity
of any thin low-aspect-ratio wing, provided the pressure distribution is
known on the surface of a nonlifting body of revolution having the same
longitudinal distribution of cross-section area S(x) . The corresponding
rule relating the pressures on two wings having different cross-section
shepes but the same S(x) can be easily derived by aspplying equstion (99)
twice and subtracting so as to eliminate all terms pertinent to the body
of revolution.

Wings and bodies having similar longitudinal distribution of cross-
section aree.- Lt is & simple metter to extend the previous results SO
as to include more general relations which apply to wings and bodies
having longltudinal distributions of cross-section area that are merely
proportional. The information needed to achieve this generelization is
supplied by the transonic similarity rule for slender bodies of revolu-
tion (ref. 5). The rule stetes that at My = 1 the pressure distributions
on two slender bodies of revolution having area distributions given by

N Sm,I]; : . .
S’:[(l ~ 8m,T SI(T) (204)
are related according to ;
1/2
%) _ Sm,1x 14 SII(X/” Sp I/
CPB,Il(l . B I() T a(x/1)® ln Sm,TT 7f[I+l (105)

where Sp refers to the maximm cross-section area and the subscripts I
and. II refer to properties associated with the two bodies. If both bodies
are in air, 7 = 7y, and equation (105) reduces to

&@sr(x/1) . Sm,x

CPB II( CPB I<> l II 2 in (106)
Ta(x/1)® 7 sy,1r

If it is desired to determine the pressures for a wing having

an ares distribution given by SII(x/ 1) and the pressure distribution is
known for a body of revolution having an area distribution SI(x/'l.)
proportional to Syy(x/1), one merely computes Cpg,y for a body of

revolution of area Syy(x/1) using equation (106) and substitutes the
result for Cpp 4 in equation (99).
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Application to the Calculdtion of Pressures and Forces
on Thin Elliptic Cone-Cylinders at Mg = 1

The relations developed in the preceding section will now be applied
to the calculation of the pressures and forces at My = 1 on the conical
portion of the thin cone-cylinder of elliptic cross-section illustrated
in sketch (k). The ordinates of the upper surface of the cone are given

by
/
2(ey) = 2 @2-32)" " (107)

where m 1is the tangent of the semiapex angle,
1 is the length of the cone, and t is the
meximm thickness of the cone. It follows that
x the elliptic section in the plane x = x; bhas
mejor and minor semiaxes equal to mx, and tx,/21,
Sketch (k) respectively. The cross-section area and surface
slope are, respectively,

S(xl) = F) 1/2

mme® | Omy i ' (108)
2 Fu aiaeE- ) |

Pressure distribution on nonlifting coné-cylinders.- From equa-
tion (50), Qo for the symmetrical nonlifting case can be written as

mx d . 1/2 '
Py = -2]::?] 2Uo 312 (x, y1) 10 [(y-32)7 + 23] & (109)

=X

which, when evaluated on the wing surface (i.e., z = 0, -mx < y < mx),
ylelds .
_ Uotmx mx

— 11
,(Pzw_ o1 in > (110)

After inserting this relation into equation (99) and carrying out the
indicated operations, one obtains

- mt ml ,
CPW—CPB-QZ <l+1n 21-,) (111)

where CPB refers to the pressure.distribution on & circular cone-
cylinder having such a semispex angle 6 +that it has the same longitudinel
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distribution of cross-section area as the elliptic cone-cylinder; thus

tl/a
= (Bt
9= 27.)

The pressures on such a body can be determined from those shown graphi--
cally in sketch (i) for 6 = 0.10 by application of equation (106),
which reduces to the form

Cp_ = 100 92<CPB> - 26% 1n 100 62 (112)
B 6=0.10

As mentioned previously, following equation (99), the difference
CP - CP is the same as given by linearized slender-body theory for
W B

subsonic or supersonic flow. As a corroboration of this statement, con-
sider the expression given by slender-body theory for-the supersonic
pressure on the thin elliptic cone (ref. 25, p. 257)

= -==]1+1In 11
_ . (113)

and the corresponding expression for the supersonic pressure distribution
on the slender circular cone (ref. 25, p. 24l)

_ o 1/2 o i/z
Cp =-921+27,n9(M°'l) =-‘.‘El+27,nm_tm°_'_];)_
SB 2 21 81
(11k)

The difference between equations (113) and (114) obviously reduces to
the form given in equation (111).

The application of the foregoing theory to a specific case will now
be illustrated by determining the pressure distribution Cp, at My =1

on an elliptic cone having m = 1/2 and t/Z = 0.06. The first step is
to calculate the pressure distribution at My = 1 on the surface of &
circular cone-cylinder having a semiapex angle given by

~

/2
6 = ’;—;l) - (0.015)*/2 = 0.1225 (115)

The pressure distribution on the selected elliptic cone-cylinder can then
be calculated through use of equation (111) and is

cPw = ch - 0.0364 (116)




52 NACA TN 3717

The results for both the circular and the elliptic cone-cylinders are
shown graphically in sketch (1). Note that the pressure distribution
is independent of y in this case and that a single curve of cpw
versus x/'l. suffices to define the pressure on the wing.

PRESSURE DISTRIBUTION ON AN ELLIPTIG CONE-GYLINDER AT M.=I

.20

2 12 ~
\ ‘k
\ AN
04 e
t/1=06
o)
. 4 [
0 2 8 8 10
Sketch (1)

Drag of nonlifting cone-cylinders.- The drag Dy at M, = 1l of thin
elliptic cone-cylinders can be obtained by direct integration of the
product of the pressure and surface slope and is expressible in the form

Dy = D +.p°U°2ﬂ2 _aﬂdxdy (117)
e 2 o CPWBX

where the integration is extended over the plen form and D, represents
the contribution to the drag that results from a finite leading-edge
radius of curvature. Since only that portion of (pw denoted by q)zw

contributes to De, this quantity can be calculated in the same manner
as described in references 25 and 28 for linear theory. Thus, the con-
tribution per unit of span is, in slender theory,

dDe ooUo” ds =
iy =% = 1'n<'-"3 > (118)
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vhere 1, 1s the radius of curvature normal to the wing leading edge
and s 1is the local semispan. If the ordinate of the wing, in the
vicinity of the leading edge, is

1/
2y = h(s;¥) (s-3) (129)
equation (118) becomes
dDe ol 2 s\

For the thin elliptic cone, zy is given by equation (107) and s(x)=mx,
hence

2
n?(s,8) = =2
om212
‘and
[/ 2
dDe x PoYo
De=2f dymdx=K——é—-m2t2 (121)

(o}

The second. term on the right of equation (117) becomes, upon substitution
of equation (111) for Cp

1

pUs” dzy A f as mt ml

—= = Cp. & 5, . O ne

> Uacpwaxdxdy 5 | P - & - 57 1+zn2ts(7,)
W

2

P,U 1
= - 200 24209 4 3 B
Dy i m2< n o

The drag of the.elliptic cone-cylinder is thus

U2
D, = Dy - E"LQQ_ n2t2in gtz'- (122)

Wote that the circular cone-cylinder and elliptic cone-cylinder have
different values of drag at Mp = 1, even though they have the same area
distribution. As an illustration of the order of magnitude of the quan-
tities involved in equation (122), the drag at My = 1 of a circular
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cone~-cylinder having semiapex angle 6 = 0.1225, as determined by inte-
gration of the pressure distribution shown in sketch (1), is

_ l-"oUo2 2
(PB)g_g. 1205= O-00MBH —5— 1 (123)

whereas that of an elliptic cone-cylinder having m = 1/2 and t/l = 0.06
is

pUo” 2
(Dw)m e 0.00383 - 1 (124)
t/1=0.08

Thus, although both bodies have the same aree distribution, the drag of
the elliptic cone-cylinder is less than 80 percent of that of the circular
cone-cylinder.

More general. resulits for circular and elliptic cone-cylinders can be
obtained by cambining equations (123) and (124) with the transonic simi-
larity rule for the drag of slender bodies of revolution. The latter can
be derived by integration of the corresponding relation for the pressure
given in equation (106) and was first given by Oswatitsch and Berndt in
reference 5. It states that the drags at Mg = 1 of two bodies of revolu-
tion having ares distributions given by equation (104) are related,
assuming both bodies are in air, so that 7T = 71T according to

2 U2 s1'2(1) - 8'3(0)
b = (S;:E) by + 9020 I - n Sif“’; (125)

For slender circular cone-cylinders S= 710°x° and equation (125)
reduces to

2

011 “ PY0 2 o1 .
e (oo e (] o

which becomes, upon substitution of the values given by equation (123)
for Dy and 61

U 2
Dy = - ne{l.ss +2n 92] 3"2—"— ' (127)

The gemeral expressions for Dy and D]3 can be compared more readily if
the relation 6 = (nrl'./2'L):"'2 is introduced to express 6 in terms
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of m, t, and 1 of the thin elliptic cone having the same area distri-
bution, thus

U 2
Dg = - p°2° [)’f m2t2<l.55 +21n %) ] (128)

Combination of equations (128) and (122) yields the corresponding result
for the drag at My = 1 of thin elliptic cone-cylinders

2
=-&£o_.£22<, E"_E]
D > [h_mt 1.55 + 1o 5 (129)

Before leaving the subject of similarity rules, it is of interest
to note that equation (129) for the pressure drag of thin elliptic cone-
cylinders is in accord with the tramsonic similarity rule for the pres-
sure drag of thin wings of finite spen (see, e.g., ref. 4). The latter
is usually given in dimensionless form and provides that the pressure
drag coefficient Cpat My =1 of a family of thin nonlifting wings of
affinely related geometry, plen-form area Sp, thickness ratio T, and.
aspect ratio A satisfy the equation

c
~o7s = £ar/®) (130)
where
Cp = ——EE— (131)
Polo
2

and f indicates a functionsl dependence. If indeterminate forms that
arise from the infinite plen-form area of a cone-cylinder are avoided by
letting S, represent the plan-form aree of only the conical part of
the body, , A, and T are related to m, t, and 1 according to

t
Sp=m7‘2’A_—_)-|.m,1'=T (132)
and equation (129) can be rewritten as follows
c
D DW 7 1/3( A71/5>
= ——s = -2z At*/5(1.55 + 3 In (133)
/3 ol 5/8 16 .8
2

It is evident from this form of the result that Cp/t>/2 is a function
of ATl/8 glone, as required by the similarity rule.
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Pressures and forces on lifting cone-cylinders.- The relations sum-
marized in sketch (f) also permit the calculation of the pressure distri-
bution on a thin elliptic cone-cylinder when inclined at a small angle of
attack. To calculate this quantity, one must first have the expression
fTor cP2W, ar The necessary expression is well known, however, since the

Pproblem is equivalent mathematicelly, for the planar boundary conditioms,
to the boundary-velue problem associated with translation of a flat plate
in a two-dimensional incompressible fluid. Thus (p2W and Py Om the
surface of the thin inclined elliptic cone are s

(134)
<P2W’m + T, a.(m2x2 y2)
U, tmx . 1f2
Vo = —2— 10 T # UgalnPx® - 32) (135)

where the upper (plus) sign is to be used on the upper surface and the
lower (minus) sign on the lower surface. After inserting equation (135)
into equation (99), one obtains

ml 2(!1!122{
(’,'Ilw CPB - — 1+ 1in E) (m2x2-y2)lI2

where the convention concerning upper and lower signs still holds. The
serodynamic loading, or the difference in pressure between the two sides
of the wing, is thus

(136)

-

=, /2 ( ) (%W)u PP Y. (137)

A sketch of the load distribution is shown
in sketch (m). Integration of the loading

Polo

_ap_ over the plan form leads to the following
-}Uf expression for lift

U 2
p°2° (2nam12) (138)

Iy =

Sketech (m)
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Although the pressure distribution at 'Mo = 1 is not the same as
given by linear theory, it will be recognized that the load distribution
and lift arise solely from Doy o and are therefore the seme as given

2

by linear slender-wing theory. One recognizes, consequently, that the
1lift of any low-aspect-ratio wing having such a plan form that no part
of the trailing edge extends forward of the station of maximum span is
given by

p.U 2 .
Ly = —25%~(2naso”) (139)
and the drag due to lift by
=2
Dy - Dwa;o ) L (140)

The fraction 1/2 enters as & result of suction forces on the leading edge.
Note that the above statements also imply that all reciprocal and reverse
flow relations of linear theory are applicable to lifting forces at M =1
on slender wings at small angles of attack.

As in the case of drag discussed previously, equation (138) for the
1lift of thin low-aspect-ratio wings is compatible with the transonic
similarity rule which states that the lift-curve slopes of a family of
thin wings of finite span and affinely related geometry are related
according to (see, e.g., ref. U4)

Ti/sqy, = £ (AT1/3) (k1)
where
= lim —L— (142)
® a0 (pU%/2)8pa

Substitution of the geometric relations of equation (132) into equa-
tion (138) for the lift, yields simply

Tl/sch - _% Arl/8 (143)

which is obviously in asccord with the similarity rule. The drag due to
lift given by equation (lll-O) is in corresponding agreement with the _
appropriate transonic similarity rule.
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Momentum Analysis of Drag of Slender Bodies at M, =

The previous example of the thin elliptic cone-cylinder has disclosed
significant differences in the drag at My = 1 of elliptic and circular
cone-cylinders having the same longitudinal distribution of cross-section
area. Since this finding is contrary to the often quoted transonic area
rule, it is of interest to study the sonic drag of a more general class
of bodies. This will now be done using momentum methods.

Derivation of general relation for drag.- Consider a surface %
which encloses a volume containing an aerodynamic body. The vectorial

_>
force F on the body can be determined by considering the pressures and
flux of momentum at X. In general there results

ﬂ(P-PO)dZ ﬁ oV (U +v .d; (14h)

where vector nota.tion is used, p and p are the local static pressure
and density, and V is the local perturbation velocity vector.

For present purposes, the surface X will
be taken as shown in sketch (n). Two parts
of X denoted as I and II, are plane surfaces
normal to the x eaxis and situated upstream
and downstream of the body. The remaining part
of 3%, denoted by IIT, is & small circular
cylinder of radius Ry large enough so that

the body is entirely enclosed within the cylin-
drical surface. Since it will be assumed that
Sketch (n) the body is slender and smooth enough that the
necessary restrictions on ¢ are satisfied .at
all stations forward of the base, but that discontinuities in geometry
or velocity may occur there, the plane surfaces I and II will be placed
at infinity upstream end at the base of the body, respectively.

It is sufficient, to the order of accuracy of transonic theory, to
approximate p and p &at points near the body by

and

d
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Furthermore, if attention is restricted to the streamwise component of
force, total drag of the enclosed body is given by

- % [[[(u?- 1) + P4 |y aa-p, [[ummpoax  (45)
II I1T

vwhere vV, 1s the radial component of velocity. This expression holds,
of course, at My = 1 and becomes

D= %Qﬂ‘(ﬁ + w2)dy dz - p, ﬂ‘uvrnzde ax (1146)
II ITT

An alternstive form for equation (146) which will prove useful can be

obtained by replacing the surface integrel over II by a line integral.
Thus, Green's theorem provides

o v [T - @

- [oRa, - [[ovo ay e (17)
C iT

where C is a curve, situated in plame II, which goes around the wing
and also sround the control surface X, do, is an element of C, and n
is the unit normal drawn into the interior of C, as illustrated in

sketch (0). But near the body the relation ¢ = @, + g(x) holds, and
therefore within C, hence the equation
VP =0 is satisfied in II, z

d
ﬁ(va +w2)dydz=-f cp-a—gdnc (118)
IT C
and equation (146) for drag becomes

P o)
D=-—29 q>§£d0'c-poL[[uerzdedx
C III

(1:9)

Sketch (o)
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Relation between drag of wings and bodies having the seme area
distribution.- Consider sonic flow about two aerodynemic shapes, one a
thin wing and the other -a slender nonlifting body of revolution, having
the same longitudinal distribution of cross-section area. If equa-
tions (90) and (91) are substituted into equation (146), and if the
Fourier expansion for Poyr = Pop obtained from equations (58) and (65)

is introduced into the integrals over III and the portion of C con-
tiguous with IIT, one hes

atp d
3] as
Cw
Po ﬂ upVr Ry dx ' (150)

IIT

The contour C is here divided into two parts. The inner portion that
immediately surrounds the wing is denoted by Cy, vhereas the outer
portion is denoted by Cyrr- It follows similarly that a corresponding

expression can be written for the drag of the body of réevolution. Thus

oo,
Po f 2p as f acPB
= e do., + U, 22 X) + —_= do -
DB ) (p2B an c (o] ax g( ) A q>B an c
Cs IIT
P ﬂ qurBdee ax (151)
ITI

where refers to an integration contour drawn around the cross section

of the body. If the exterior portions of the control surface % are
now selected the same for the two cases (i.e., surface III is the same
for the wing and body), it follows immedistely by subtraction that .

3

Q oQ
o) 2
=v-2 ([ o, o - [ 9 2 (122)
Cy Cp

The integrals over Cy can be divided into two parts after recalling that

the analysis applies for small angles of attack and that CPZW can be
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written as the sum of (PZW and CPZW s provided the thickness does not
) PLe]

t
vanish. Substitution of this relation into equation (152) yields

oP o, 3P
o]
Cy Cw Cq

(153)

where the integrals involving the cross-product terms are absent since
Poyy ¢ end its normal derivative along Cy are even functions of =z,
2

whereas ‘Pzw, a and its normel derivative are odd functions of z.

Since q)zw o is proportional to a, it is evident that the first

integral of eq_u;.tion (153) provides a contribution to the drag which is
proportional to the square of the angle of attack. This quantity is
exactly the vortex drag and is represented by the same expression at all
Mach numbers.

The difference of the two remaining integrals gives the difference
in the drag at My = 1 of a nonlifting wing and body having the same
longitudinal distribution of cross-section area. Since the two integrals
will not always cencel, the drag of the wing and body will, in general,
be different. One can account in this way for the difference in drag of
thin elliptic cone-cylinders and circular cone-cylinders disclosed pre-
viously by integration of surface pressures. To show this, one must
evaluste the integrsls of equation (152) at the shoulder of the cone-
cylinder (x = 1) using the expressions for cp2w and Py given in equa-

tions (110) and (93). In the integration, the contour C;; extends on
both sides of the y axis from -ml to +ml whereas the contour Cg is
a circle of radius 0l. Upon carrying out the indicated operations, one
obtains the same result as that given previously in equation (122) in
which the drag of the elliptic cone-cylinder is substantially less than
that of the circular cone-cylinder.

Special cases for which the drag of wing and body is the same.-
Although it is important to note the difference in the drag of two bodies,
it is perhaps even more important to know under what conditions the drag
of the bodies is the same. If attention is confined to nonlifting ceses
so that cp2w o is zero, the vortex drag venishes, the condition for the

2

equality of the drag of a wing and body having the same area distribution
is that the contribution of the last two integrals of equation (153) cencel.
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This condition is satisfied for certain large and important classes of
shapes. One such class includes shapes that are cylindricel at the base
since, then,

P2y & 99zp
o =0, -BT =0 (15)"‘)
and
Dy = D (155)

Another includes many shapes that taper to & point at the rear since,
then, both integrels again vanish. Other classes for which it is more
difficult to specify the geometry include shapes for which the integrals
have equal values different from zero. The latter case provides some
interesting situations in which some members of a family of wings end
bodies having the same longitudinal distribution of cross-section area
have the same drag and others have a different drag. To be more specific,
consider & low-aspect-ratio pointed wing having a straight trailing edge
normal to the free-stream direction and smooth airfoil sections closing
with a finite wedge angle at the rear (an example of such a wing is a
triangular wing with biconvex profiles), and a body of revolution having
the same area distribution as the wing. Application of equation (153) to
this pair of bodies quickly leeds to the conclusion that the drag of the
body of revolution is infinitely greater than that of the wing. This is
apparent because the integral around the base of the wing is finite,
whereas that around the base of the body is logarithmicelly infinite since

f Pap 52 2B age= 2 [(Uo %)2 in R] (156)

X=1

and dS/dx is finite emd R is zero at x = 1. The infinite drag of
this particular body of revolution is, of course, spurious and is no
doubt associated with the fact that the round stern is too blunt to treat
with a theory of the slender-body type. On the other hand, there is no
reeson to believe that the pressure drags of the wing and body are the
same .

Since no corresponding difficulties occur at the base of the wing,
let the drag of the above wing be compared with that of a second thin
low-aspect-ratio wing having the same longitudinal ares distribution.
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For such a comparison, equation (153) must be replaced by the correspond-
ing relaetion between the drag of two wings

P i Pz
Dyrr = Dy - f chWII = do, - f (PZWI ~ do,] (157)
Oy Gty

It is immediately clear that the two wings have the same drag if they have
the same geometry at the base. This condition for the equality of drag
of two bodies having the same ares distribution has been aerrived at pre-
viously by Harder snd Klunker (ref. 16) and by Berndt (ref. 29) by some-
vwhat different means. As is apparent from the preceding discussion, this
condition is sufficient but not necessery.

As a Purther example, consider the case where the geometry of the two
wings is affinely related, that is, for a constant chord, the second wing
is derived from the first by simple stretchings of the y and z dimen-
sions. For the present class of wings, having straight trailing edges
normal to the free-stream direction and eirfoil sections closing with a
finite wedge angle at the rear, each of the integrals of equation (157)
can be written in the form

39
[w Py f- doe = L . [cpaw 2Uo %:—;' ]x=lso1'd (.:r_() (158)

Then the product At of aspect ratio and thickness ratio is the same for
both wings, although A and T individuelly may be different. It follows,
moreover, from the fact that the ratio z/?br of the wing ordinates to the
meximum thickness is the seme function of x/1 end y/sy; for affinely
related wings, that o. is the same function of y/so for both wings.
Since s, is proportional to A end At is the same for both wings, it
follows that the two integrals of equation (157) have the same value, and
both wings have the same drag. Inasmuch es it is only the conditions at
the trailing edge that enter into the integrels of equation (157), similar
reasoning shows that the two wings also have the same drag if the condi-
tion of affinely related geometry applies only to the cross-section shape
and surface slopes in the x direction at the trailing edge. On the
other hend, if the wings have merely the same longitudinal distribution
of cross-section area, the simple relations just described between the
verious elements of equation (157) no longer hold, and the wings will,

in generel, have different drags.
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Application to Nonplanar Problems

Equation (90) expressing the relation between the perturbation
potential for sonic flow gbout a thin low-aspect-ratio wing and that
about a slender body of revolution has been derived on the assumption
that the boundary conditions for the wing can be specified on a planar
surface. The development outlined in sketch (f) suggests that the result
can actually be extended to include more general classes of slender
shapes. Accordingly, assume that equation (90) holds for cases involving
nonplanar boundery conditions and let the results given in the preceding
sections for the drag at M, = 1 of thin elliptic cones be extended to
include slender elliptic cones of any eccentricity. The analysis proceeds
identically to that for the thin elliptic cone, the only chenge being that
q)ZW must be recalculated. This is a simple problem in two-dimensional

potential theory since q>2W represents the potential associated with
uniform growth of an ellipse, and the result, when evalusted on the cone

surface, is
Uotmx mx %
g = B [ 2 (14 1) ] 159

W oo 2 oml (159)

Substitution of this result into equation (153) leads to the following
relation for the drag

2 2
= - E&DEQ_ m2t2in | 2t (1 + .._'.b._> 160
Dy = Dp y 2 2t 2ml (160)
Comparison of these two expressions with the corresponding relations
for thin cones given in equations (110) and (122) shows that they differ
by the inclusion of en

r—

~—_ " | DRAG OF ELLIPTIC CONE- ' additional factor (l+t/2ml)
P~ CYLINDERS AT Me=! | in the more general result.
“\“Q\ | Although the contribution
004 T~ — mii/1)=030_ of this term is of negli-
e (6=1225) glible importance for cones
DUZ" | ‘!\ having t/mZ small, it is
(podlol | _ | vital for nearly circular
oo B = Aa;‘g/&'mo cones, and indeed necessary
1 | to assure the equality of
X ] and when the ellip-
% _qu% tic cone becomes a circular
ol ) .| |—Ea . ] .|, cone, that is, when t/mi=2.
] 2 4 6 810 20 40 60 80 I00In order to illustrate this
_major oxis point further, sketch (p)
minor axis has been prepared, showing

Sketch (p) the variation with 2mil/t,
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or the ratio of major axis to minor axis, of the drag at My = 1 of two
femilies of elliptic cones. All members of each family have the same
longitudinal distribution of cross-section area. As indicated, one
femily is defined by mt/ 1 = 0.02 and includes the circular cone-cylinder
having a semiapex angle 6 of 0.10 radian, and the other by mt/1 = 0.03
and includes the circular cone-cylinder having 6 = 0.1225 radian. The
solid line indicates the values computed using equation (160), and the
dotted line those computed using equation (122). In both cases, the

drag D of the circular cone-cylinder is calculated from equetion (127).
As would be anticipated, the solid and dotted lines coincide for thin
cones, but they differ considerably for circular cones (2ml /t = 1). More
interesting, perhaps, is the extent to which the drag of a family of cone-~
cylinders having the same longitudinel distribution of cross-section ares
depends on the shape of the cross section.

The procedures applied here to the elliptic. cone-cylinders can also
be applied to many other cases, such as wing-body combinations, etc. For
bodies having the same longitudinal distribution of cross-section area as
_ a cone-cylinder one must merely determine the appropriate function for
Poy and proceed in the same manner as for the elliptic cone-cylinders.

For other bodies it is also necessary to have knowledge of either the
theoretical solution or the experimental pressure distribution for sonic
flow around e body of revolution having the seme (or affinely related)
longitudinal distribution of cross-section area as the given body. It
should be remarked, however, thet the extension to some of these problems
involves the assumption that equation (90) applies to nonplanar cases.

Comparison With Experimentel Results

In the remainder of this paper, experimental data will be presented
end & comparison made with the predictions of sonic slender-body theory.
Although these comparisons may not be ideal, since experimental data for
Mp = 1 are only available for families of shapes that strain the assump-
tions of the theory, they show remarksble egreement with the theory and
help define the range for which the results may be expected to apply.

Cone-cylinders.- The most informetive class of bodies to investigate
further with regard to comparison of theory and experiment is the cone-
cylinder. This is because of the availebility of not only the similarity
rules, etc., but also the complete solution for the pressure distribution
and flow field in the vicinity of such bodies. Experimental data are also
available in reference 18 by Solomon for the pressure at several points
on the surface of two rather blunt circular cone-cylinders at Mach numbers
near unity. The tests were conducted on cone-cylinders having semiapex
angles of 20° and 25° and at Mach numbers up to ebout 0.96. The corre-
sponding pressures at My = 1 can be obtained only by extrapolation. The
test Mach numbers are sufficiently high, however, that the local Mach
numbers on the body surface are virtually independent of the free-stream
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Mach number. These pressures are plotted in sketch (q) together with the
theoretical pressure distribution for slender cone-cylinders at My = 1.

. 8 \ 8r—
(o]
Gp \ Cp O—
(]
a ¥_o.\ 4
11 - .
_/’/ i E /" / o]
3 : g
. /——' ! - >
el \ : 45 \
o T 9='20° ‘\ 4 o - 8=25° \ B
0 x/1 To) 0 x/1 10
~—— Theory © Experiment (reference 18)
Sketch (q)

The latter were computed using equation (112) together with the theoreti-
cal pressure distribution for a circular cone-cylinder having semispex
angle 6 = 0.10, see sketch (i). With the exception of one point on the
25" cone-cylinder, the theoreticel and experimental values are in remark-
able agreement, considering the bluntness of the cones.

It would be very informative to meke similar comparisons for cone-
cylinders that are more slender, or that have noncircular cross sectioms,
but the authors are unaware of any suiteble experimentsl data. Studies
involving bodies of revolution having area distributions that differ from
that of cone-cylinders are handicepped at the present time by the lack of
theoretical solutions for the transonic pressure distribution, and would
have to be confined to the investigation of such items as the range of
applicability of the similarity rules, the existence and lateral extent of
the g(x) function, etc.

Wings .- Since complete solutions for sonic flow around three-
dimensionel. wings have not yet been obtained, the following discussion
must be confined to cases in which experimentsl information is known for
two or more wings or bodies having the same or affinely related longitu-
dinal distributions of cross-section area. Probably the most extensive
set of data of this type is that given in reference 20 for a large family
of affinely relasted wings of rectangular plan form having WACA 63A0XX
sections. Since the results for My, = 1 can be presented most concisely
by using the varisbles suggested by the transonic similarity rules for
wings of finite span (see, e.g., ref. 4), the experimentsl results for
the zero-lift pressure drag and the lift-curve slope at M, = 1 are
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given in sketch (r) by plotting Cpfr5/® end /s as functions of
ATY/3. Ag shown previously by McDevitt (ref. 20), these data confirm the
statement provided by the similarity rules that the results so plotted
should define a single curve for each aerodynamic quantity.

DRAG AND LIFT AT Mg=l <
RECTANGULAR WINGS-NACA 63A0XX PROFILES
O5F
lﬁl
ar o4t é’/ o
& [p& T
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Sketch (r)

The curves representing the zero-lift pressure drag and the 1lift-
curve slope have the same general form for high-aspect-ratio wings. The
curves approach horizontal lines for the wings of larger aspect ratio,
and the values for the 1lift and drag are not too different from the
theoretical values given by Guderley and Yoshihera in references 30 end 31
for two-dimensional sonic flow around double-wedge profiles. The curves
approach straight lines through the origin for low-aspect-ratio wings and

the experimental values for the lift-curve slope of wings having A71/3
less than about unity practicelly coincide with the theoreticel velues
given by equation (143). The corresponding theoreticel values for the
drag at Mgy = 1 are not known.

Some measure of the applicability of the theoretical results cen still
be derived, however, by examining the relation between the experimental
drags of various wings. If the effects of the violation of the theoretical
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requirements that occurs at the round nose of the unswept leading edge of
each of the present family of wings cen be disregarded, the discussion
following equation (158) applies and all low-aspect-ratio wings having a
given longitudinal distribution of cross-section area have the same drag.
Inasmich as not many pairs of wings of the present family actually have
the seme area distribution, a more useful statement of the result is that
the drag is a unique function of the area distribution. Since the area
distribution of an affinely related family of wings can be specified by
giving, for instence, the chord 1 and the ratio Sm/'L2 (or its equiva-
lent, the product of the aspect ratio and the thickness ratio) of the
maximm cross-section area to the chord squared, it follows that the drag
and geometry of the present family of wings are related according to

D 5 o (ar
(0.U. 2/2)12 B fl('fz-) = fa(A) (en)
(e o]

where £, represents an unknown function of the indicated variebles.
This relation may be contrasted with that provided by the similarity rule
that states

Cp D /
1_5/3 = (p U°2/2)SPT5/8 =f2 (ATl 3) (162)
o

where Sp refers to the plan-form area. At first glance, the two
relationships appear to bear only slight resemblance. It can be seen

upon closer exemination, however, that some of the apparent differences
are superficial and of little or no significance. Thus, let equation (161)
be rewritten as

) 2
P Us" pUo S
D = =22 17f, (A7) = 22~ = (ar)g5(ar)

or

c
T—s?-g = ar*/%¢, (ar) (163)

This appears to be the closest that the two results can be brought
together without introducing additional restrictions or approximations.

Both are now concerned with the same quantity, CD/TS/ 3, but equation (162)

states that this quantity is equel to some unknown function of AT/ 8,

whereas equation (163) states that it is equal to ATY/S3 times some
function of At. The only way in which both results can be universally
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correct is for the functions f, and £5 10 be constents and not dependent

on either AT or A'rl/ 8. Both rules are not universally correct, however,

since equation (163) is derived from transonic slender body theory and
therefore can be expected to apply only to wings of small aspect ratio.
From the foregoing considerations, one can conclude that the drag at

M, = 1 of the low-aspect-ratio wings of the present family must depend on

the geometry in such a way that Cp/t5/2 is linearly proportional to AT/3,
Examination of the drag data of sketch (r) shows that the experimental

results exhibit precisely this trend for wings of AT*/2 less than about
unity. An alternative interpretation of” this result is that the drag of
a number of low-aspect-ratio wings of the present family all having the
same chord, veries as the square of the frontal area; that is,

D/ %poanlz depends on the square of Sm/7,2. Further discussion of

these and related points appears in reference 32.

It appears that the degree of correspondence between theory and
experiment disclosed above for such extreme cases as rectangular wings
of aspect ratios 3 and It must be attributed partially to the averaging
influence of integration, and that the same close correspondence msy not
be found for more detailed quantities. For example, slender-body theory
indicates that the 1lift on low-aspect-ratio rectanguler wings at My =1
is concentrated along the leading edge. Although pressure-distribution
measurements were not included in the test program reported in refer-
ence 20, pitching-moment measurements were made from which the center-of-
Ppressure position can easily be deduced. The results indicate that the
center-of -pressure position at small angles of attack is within the first
10-percent chord at M, = 1 for each of the wings of aspect ratio 1/2 or 1,
but moves progressively rearward for wings of larger aspect ratio. Hence

the range of AT1/3 for which theory end experiment agree may be expected
to be less than that indicated by the integrated lift and drag results.

On the other hand, spplicetion to wings of rectangular plan form imposes
severe strain on the slender-body assumptions, and better agreement, or a
wider range of applicsbility, might be anticipated with wings of other
plan form, such as trisngular.

Wing-body combinations.- Several comparisons between the experimental
zero-lift drags of wing-body combinations and bodies of revolution having
the same longitudinal distribution of cross-section area were given by
VWhitcomb in reference 6 in comnection with his discovery of the area rule.
The bodies tested were of such geometry that the integrals of equa-
tion (153) are zero and the drags of wing-body combinations and their
equivalent bodies of revolution should be the same. The experimental
results show excellent agreement in some cases, and lesser agreement in
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other cases. These results will not be discussed further here since the
experimental dats are already analyzed from the point of view of equality
of drag in reference 6.

Ames Aeronautical Laboratory

National Advisory Committee for Aeronautics
Moffett Field, Celif., Apr. 2, 1956
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